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Abstract

In the analysis of security protocols, methods and tools for reasoning about
protocol behaviors have been quite effective. We aim to expand the scope of those
methods and tools. We focus on proving equivalences P ≈ Q in which P and Q

are two processes that differ only in the choice of some terms. These equivalences
arise often in applications. We show how to treat them as predicates on the be-
haviors of a process that represents P and Q at the same time. We develop our
techniques in the context of the applied pi calculus and implement them in the tool
ProVerif.

1 Introduction

Many security properties can be expressed as predicates on system behaviors. These
properties include some kinds of secrecy properties (for instance, “the system never
broadcasts the key k”). They also include correspondence properties (for instance, “if
the system deletes file f , then the administrator must have requested it”). Such predi-
cates on system behaviors are the focus of many successful methods for security anal-
ysis. In recent years, several tools have made it possible to prove many such predicates
automatically or semi-automatically, even for infinite-state systems (e.g., [15, 40, 43]).

Our goal in this work is to expand the scope of those methods and tools. We aim
to apply them to important security properties that have been hard to prove and that
cannot be easily phrased as predicates on system behaviors. Many such properties can

∗A preliminary version of this work was presented at the 20th IEEE Symposium on Logic in Computer
Science (LICS 2005) [20].

1



be written as equivalences. For instance, the secrecy of a boolean parameter x of a
protocol P (x) may be written as the equivalence P (true) ≈ P (false). Similarly, as
is common in theoretical cryptography, we may wish to express the correctness of a
construction P by comparing it to an ideal functionality Q, writing P ≈ Q. Here the
relation ≈ represents observational equivalence: P ≈ Q means that no context (that is,
no attacker) can distinguish P and Q. A priori, P ≈ Q is not a simple predicate on the
behaviors of P or Q.

We focus on proving equivalences P ≈ Q in which P and Q are two variants of
the same process obtained by selecting different terms on the left and on the right. In
particular, P (true) ≈ P (false) is such an equivalence, since P (true) and P (false)
differ only in the choice of value for the parameter x. Both P (true) and P (false)
are variants of a process that we may write P (diff[true, false]); the two variants are
obtained by giving different interpretations to diff[true, false], making it select either
true or false.

Although the notation diff can be viewed as a simple informal abbreviation, we
find that there is some value in giving it a formal status. We define a calculus that
supports diff. With a careful definition of the operational semantics of this calculus,
we can establish the equivalence P (true) ≈ P (false) by reasoning about behaviors of
P (diff[true, false]).

In this operational semantics, P (diff[true, false]) behaves like both P (true) and
P (false) from the point of view of the attacker, as long as the attacker cannot dis-
tinguish P (true) and P (false). The semantics requires that the results of reducing
P (true) and P (false) can be written as a process with subexpressions of the form
diff[M1,M2]. On the other hand, when P (true) and P (false) would do something that
may differentiate them, the semantics specifies that the execution of P (diff[true, false])
gets stuck. Hence, if no behavior of P (diff[true, false]) ever gets stuck, then P (true) ≈
P (false). Thus, we can prove equivalences by reasoning about behaviors, though not
the behaviors of the original processes in isolation.

This technique applies not only to an equivalence P (true) ≈ P (false) that repre-
sents the concealment of a boolean parameter, but to a much broader class of equiva-
lences that arise in security analysis and that go beyond secrecy properties. In principle,
every equivalence could be rewritten as an equivalence in our class: we might try to
prove P ≈ Q by examining the behaviors of

if diff[true, false] = true then P else Q

This observation suggests that we should not expect completeness for an automatic
technique. Indeed, the class of equivalences that we can establish automatically does
not include some traditional bisimilarities. Accordingly, we aim to complement, not to
replace, other proof methods. Moreover, we are primarily concerned with soundness
and usefulness, and (in contrast with some related work [7, 23–25, 29, 38]) we empha-
size simplicity and automation over generality. We believe, however, that the use of
diff is not “just a hack”, because diff is amenable to a rigorous treatment and because
operators much like diff have already proved useful in other contexts—in particular, in
elegant soundness proofs of information-flow type systems [44, 45]. Baudet’s recent
thesis includes a further study of diff and obtains a decidability result for processes
without replication [12].
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We implement our technique in the tool ProVerif [15]. This tool is a protocol
analyzer for protocols written in the applied pi calculus [6], an extension of the pi
calculus with function symbols that may represent cryptographic operations. Internally,
ProVerif translates protocols to Horn clauses in classical logic, and uses resolution on
these clauses. The mapping to classical logic (rather than linear logic) embodies a safe
abstraction which ignores the number of repetitions of each action, and which is key to
the treatment of infinite-state systems [19]. We extend the translation into Horn clauses
and also the manipulation of these Horn clauses.

While the implementation in ProVerif requires a non-trivial development of theory
and code, it is rather fruitful. It enables us to treat, automatically, interesting proofs of
equivalences. In particular, as in previous ProVerif proofs, it does not require that all
systems under consideration be finite-state. We demonstrate these points through small
examples and larger applications.

Specifically, we apply our technique to an infinite-state analysis of the important
Encrypted Key Exchange (EKE) protocol [13, 14]. (Password-based protocols such as
EKE have attracted much attention in recent years, partly because of the difficulty of
reasoning about them.) We also use our technique for checking certain equivalences
that express authenticity properties in an example from the literature [8]. In other appli-
cations, automated proofs of equivalences serve as lemmas for manual proofs of other
results. We illustrate this combination by revisiting proofs for the JFK protocol [9].

One of the main features of the approach presented in this paper is that it is com-
patible with the inclusion of equational theories on function symbols. We devote con-
siderable attention to their proper, sound integration. Those equational theories serve
in modelling properties of the underlying cryptographic operations; they are virtually
necessary in many applications. For instance, an equational theory may describe a
decryption function that returns “junk” when its input is not a ciphertext under the ex-
pected key. Without equational theories, we may be able to model decryption only as a
destructor that fails when there is a mismatch between ciphertext and key. Because the
failure of decryption would be observable, it can result in false indications of attacks.
Our approach overcomes this problem.

In contrast, a previous method for proving equivalences with ProVerif [17] does
not address equivalences that depend on equational theories. Moreover, that method
applies only to pairs of processes in which the terms that differ are global constants,
not arbitrary terms. In these respects, the approach presented in this paper constitutes
a clear advance. It enables significant proofs that were previously beyond the reach of
automated techniques.

ProVerif belongs in a substantial body of work on sound, useful, but incomplete
methods for protocol analysis. These methods rely on a variety of techniques from the
programming-language literature, such as type systems, control-flow analyses, and ab-
stract interpretation (e.g., [1, 22, 37, 42]). The methods are of similar power for proving
predicates on behaviors [3, 21]. On the other hand, they typically do not target proofs
of equivalences, or treat only specific classes of equivalences for particular equational
theories.

The next section describes the process calculus that serves as setting for this work.
Section 3 defines and studies observational equivalence. Section 4 contains some ex-
amples. Section 5 deals with equational theories. Section 6 explains how ProVerif
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M,N ::= terms
x, y, z variable
a, b, c, k, s name
f(M1, . . . ,Mn) constructor application

D ::= term evaluations
M term
eval h(D1, . . . , Dn) function evaluation

P,Q,R ::= processes
M(x).P input
M〈N〉.P output
0 nil
P | Q parallel composition
!P replication
(νa)P restriction
let x = D in P else Q term evaluation

Figure 1: Syntax for terms and processes

maps protocols with diff to Horn clauses. Section 7 is concerned with proof techniques
for those Horn clauses. Section 8 introduces a simple construct for breaking protocols
into stages, as a convenience for applications. Section 9 describes applications. Sec-
tion 10 mentions other related work and concludes. The Appendix contains proofs.
The proof scripts for all examples and applications of this paper, as well as the tool
ProVerif, are available at http://www.di.ens.fr/˜blanchet/obsequi/.

2 The process calculus

This section introduces our process calculus, by giving its syntax and its operational
semantics. This calculus is a combination of the original applied pi calculus [6] with
one of its dialects [17]. This choice of calculus gives us the richness of the original
applied pi calculus (in particular with regard to equational theories) while enabling us
to leverage ProVerif.

2.1 Syntax and informal semantics

Figure 1 summarizes the syntax of our calculus. It defines a category of terms (data)
and processes (programs). It assumes an infinite set of names and an infinite set of
variables; a, b, c, k, s, and similar identifiers range over names, and x, y, and z range
over variables. It also assumes a signature Σ (a set of function symbols, with arities and
with associated definitions as explained below). We distinguish two categories of func-
tion symbols: constructors and destructors. We often write f for a constructor, g for a
destructor, and h for a constructor or a destructor. Constructors are used for building
terms. Thus, the terms M,N, . . . are variables, names, and constructor applications of
the form f(M1, . . . ,Mn).
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As in the applied pi calculus [6], terms are subject to an equational theory. Identi-
fying an equational theory with its signature Σ, we write Σ ` M = N for an equality
modulo the equational theory, and Σ ` M 6= N an inequality modulo the equational
theory. (We write M = N and M 6= N for syntactic equality and inequality, respec-
tively.) The equational theory is defined by a finite set of equations Σ ` Mi = Ni,
where Mi and Ni are terms that contain only constructors and variables. The equa-
tional theory is then obtained from this set of equations by reflexive, symmetric, and
transitive closure, closure by substitution (for any substitution σ, if Σ ` M = N
then Σ ` σM = σN ), and closure by context application (if Σ ` M = N then
Σ ` M ′{M/x} = M ′{N/x}, where {M/x} is the substitution that replaces x
with M ). We assume that there exist M and N such that Σ ` M 6= N .

As previously implemented in ProVerif, destructors are partial, non-deterministic
operations on terms that processes can apply. More precisely, the semantics of a de-
structor g of arity n is given by a finite set defΣ(g) of rewrite rules g(M ′

1, . . . ,M
′
n) →

M ′, where M ′
1, . . . ,M

′
n,M ′ are terms that contain only constructors and variables, the

variables of M ′ are bound in M ′
1, . . . ,M

′
n, and variables are subject to renaming. Then

g(M1, . . . ,Mn) is defined if and only if there exists a substitution σ and a rewrite rule
g(M ′

1, . . . ,M
′
n) → M ′ in defΣ(g) such that Mi = σM ′

i for all i ∈ {1, . . . , n}, and
in this case g(M1, . . . ,Mn) → σM ′. In order to avoid distinguishing constructors and
destructors in the definition of term evaluation, we let defΣ(f) be {f(x1, . . . , xn) →
f(x1, . . . , xn)} when f is a constructor of arity n.

The process let x = D in P else Q tries to evaluate D; if this succeeds, then x is
bound to the result and P is executed, else Q is executed. Here the reader may ignore
the prefix eval which may occur in D, since eval f and f have the same semantics
when f is a constructor, and destructors are used only with eval. In Section 5, we
distinguish eval f and f in order to indicate when terms are evaluated.

Using constructors, destructors, and equations, we can model various data struc-
tures (tuples, lists, . . . ) and cryptographic primitives (shared-key encryption, public-
key encryption, signatures, . . . ). Typically, destructors represent primitives that can
visibly succeed or fail, while equations apply to primitives that always succeed but may
sometimes return “junk”. For instance, suppose that one can detect whether shared-key
decryption succeeds or fails; then we would use a constructor enc, a destructor dec,
and the rewrite rule dec(enc(x, y), y) → x. Otherwise, we would use two construc-
tors enc and dec, and the equations dec(enc(x, y), y) = x and enc(dec(x, y), y) = x.
The second equation prevents that the equality test enc(dec(M,N), N) = M reveal
that M must be a ciphertext under N . (The first equation is standard; the second is
not, but it holds for block ciphers.) We refer to previous work [6, 17] for additional
explanations and examples.

The rest of the syntax of Figure 1 is fairly standard pi calculus. The input process
M(x).P inputs a message on channel M , and executes P with x bound to the input
message. The output process M〈N〉.P outputs the message N on channel M and
then executes P . (We allow M to be an arbitrary term; we could require that M be a
name, as is frequently done, and adapt other definitions accordingly.) The nil process 0

does nothing and is sometimes omitted in examples. The process P | Q is the parallel
composition of P and Q. The replication !P represents an unbounded number of copies
of P in parallel. The restriction (νa)P creates a new name a, and then executes P .
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M ⇓M
eval h(D1, . . . , Dn)⇓σN

if h(N1, . . . , Nn) → N ∈ defΣ(h),
and σ is such that for all i, Di ⇓Mi and Σ ` Mi = σNi

P | 0 ≡ P
P | Q ≡ Q | P
(P | Q) | R ≡ P | (Q | R)
(νa)(νb)P ≡ (νb)(νa)P
(νa)(P | Q) ≡ P | (νa)Q

if a /∈ fn(P )

P ≡ P
Q ≡ P ⇒ P ≡ Q
P ≡ Q, Q ≡ R ⇒ P ≡ R
P ≡ Q ⇒ P | R ≡ Q | R
P ≡ Q ⇒ (νa)P ≡ (νa)Q

N〈M〉.Q | N ′(x).P → Q | P{M/x}
if Σ ` N = N ′ (Red I/O)

let x = D in P else Q → P{M/x}
if D ⇓M (Red Fun 1)

let x = D in P else Q → Q
if there is no M such that D ⇓M (Red Fun 2)

!P → P | !P (Red Repl)
P → Q ⇒ P | R → Q | R (Red Par)
P → Q ⇒ (νa)P → (νa)Q (Red Res)
P ′ ≡ P, P → Q, Q ≡ Q′ ⇒ P ′ → Q′ (Red ≡)

Figure 2: Semantics for terms and processes

The syntax does not include the conditional if M = N then P else Q, which can be
defined as let x = equals(M,N) in P else Q where x is a fresh variable and equals
is a binary destructor with the rewrite rule equals(x, x) → x. We always include this
destructor in Σ.

We write fn(P ) and fv(P ) for the sets of names and variables free in P , respec-
tively, which are defined as usual. A process is closed if it has no free variables; it may
have free names. We identify processes up to renaming of bound names and variables.
An evaluation context C is a closed context built from [ ], C | P , P | C, and (νa)C.

2.2 Formal semantics

The rules of Figure 2 axiomatize the reduction relation for processes (→Σ), thus defin-
ing the operational semantics of our calculus. Auxiliary rules define term evaluation
(⇓Σ) and the structural congruence relation (≡); this relation is useful for transform-
ing processes so that the reduction rules can be applied. Both ≡ and →Σ are defined
only on closed processes. We write →∗

Σ for the reflexive and transitive closure of →Σ,
and →∗

Σ≡ for its union with ≡. When Σ is clear from the context, we abbreviate →Σ

and ⇓Σ to → and ⇓, respectively.
This semantics differs in minor ways from the semantics of the applied pi calcu-

lus [6]. In particular, we do not substitute equals for equals in structural congruence,
but only in a controlled way in certain rules. Thus, the rule for I/O does not require
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a priori that the input and output channels be equal: it explicitly uses the equational
theory to compare them. We also use a reduction rule (Red Repl) for modelling repli-
cation, instead of the more standard, but essentially equivalent, structural congruence
rule. This weakening of structural congruence in favor of the reduction relation is
designed to simplify our proofs.

3 Observational equivalence

In this section we introduce diff formally and establish a sufficient condition for ob-
servational equivalence. We first recall the standard definition of observational equiva-
lence from the pi calculus:

Definition 1 The process P emits on M (P ↓M ) if and only if P ≡ C[M ′〈N〉.R] for
some evaluation context C that does not bind fn(M) and Σ ` M = M ′.

(Strong) observational equivalence ∼ is the largest symmetric relation R on closed
processes such that P R Q implies

1. if P ↓M then Q ↓M ;

2. if P → P ′ then Q → Q′ and P ′ R Q′ for some Q′;

3. C[P ] R C[Q] for all evaluation contexts C.

Weak observational equivalence ≈ is defined similarly, with →∗ ↓M instead of ↓M

and →∗ instead of →.

Intuitively, a context may represent an adversary, and two processes are observationally
equivalent when no adversary can distinguish them.

Next we introduce a new calculus that can represent pairs of processes that have
the same structure and differ only by the terms and term evaluations that they contain.
We call such a pair of processes a biprocess. The grammar for the calculus is a simple
extension of the grammar of Figure 1, with additional cases so that diff[M,M ′] is a
term and diff[D,D′] is a term evaluation. We also extend the definition of contexts to
permit the use of diff, and sometimes refer to contexts without diff as plain contexts.

Given a biprocess P , we define two processes fst(P ) and snd(P ), as follows:
fst(P ) is obtained by replacing all occurrences of diff[M,M ′] with M and diff[D,D′]
with D in P , and similarly, snd(P ) is obtained by replacing diff[M,M ′] with M ′ and
diff[D,D′] with D′ in P . We define fst(D), fst(M), snd(D), and snd(M) similarly.
Our goal is to show that the processes fst(P ) and snd(P ) are observationally equiva-
lent:

Definition 2 Let P be a closed biprocess. We say that P satisfies observational equiv-
alence when fst(P ) ∼ snd(P ).

The semantics for biprocesses is defined as in Figure 2 with generalized rules (Red
I/O), (Red Fun 1), and (Red Fun 2) given in Figure 3. Reductions for biprocesses
bundle those for processes: if P → Q then fst(P ) → fst(Q) and snd(P ) → snd(Q).
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N〈M〉.Q | N ′(x).P → Q | P{M/x} (Red I/O)
if Σ ` fst(N) = fst(N ′) and Σ ` snd(N) = snd(N ′)

let x = D in P else Q → P{diff[M1,M2]/x} (Red Fun 1)
if fst(D)⇓M1 and snd(D)⇓M2

let x = D in P else Q → Q (Red Fun 2)
if there is no M1 such that fst(D)⇓M1 and
there is no M2 such that snd(D)⇓M2

Figure 3: Generalized rules for biprocesses

Conversely, however, reductions in fst(P ) and snd(P ) need not correspond to any
biprocess reduction, in particular when they do not match up. Our first theorem shows
that the processes are equivalent when this does not happen.

Definition 3 We say that the biprocess P is uniform when fst(P ) → Q1 implies that
P → Q for some biprocess Q with fst(Q) ≡ Q1, and symmetrically for snd(P ) → Q2.

Theorem 1 Let P0 be a closed biprocess. If, for all plain evaluation contexts C and
reductions C[P0] →

∗ P , the biprocess P is uniform, then P0 satisfies observational
equivalence.

Proof Let P be a closed biprocess such that C[P ] →∗≡ Q always yields a uniform
biprocess Q, and consider the relation

R = {(fst(Q), snd(Q)) | C[P ] →∗≡ Q}

In particular, we have fst(P ) R snd(P ), so we can show that P satisfies observational
equivalence by establishing that the relation R′ = R∪R−1 meets the three conditions
of Definition 1. By symmetry, we focus on R. Assume fst(Q) R snd(Q).

1. Assume fst(Q) ↓M , and let TM = M(x).c〈c〉 for some fresh name c. As usual
in the pi calculus, the predicate ↓M tests the ability to send any message on M ,
hence for any plain process Qi, we have Qi ↓M if and only if Qi | TM → Ri |
c〈c〉 for some Ri.

Here, we have fst(Q) | TM → R1 | c〈c〉 for some R1. The reductions C[P ]
→∗≡ Q imply C[P ] | TM →∗≡ Q | TM . By hypothesis (with the context
C[ ] | TM ), Q | TM is uniform, hence Q | TM → Q′ for some Q′ with fst(Q′) ≡
R1 | c〈c〉. Since c does not occur anywhere in Q, by case analysis on this
reduction step with our semantics for biprocesses we obtain Q′ ≡ R | c〈c〉 for
some biprocess R. Thus, we obtain snd(Q) | TM → snd(R) | c〈c〉, and finally
snd(Q) ↓M .

2. If fst(Q) → Q′
1 then, by uniformity, we have Q → Q′ with fst(Q′) = Q′

1. Thus,
C[P ] →∗≡→ Q′ and, by definition of R, we obtain fst(Q′) R snd(Q′). Fi-
nally, by definition of the semantics of biprocesses, Q → Q′ implies snd(Q) →
snd(Q′).
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3. Let C ′ be a plain evaluation context. By definition of the semantics of bipro-
cesses, C[P ] →∗≡ Q always implies C ′[C[P ]] →∗≡ C ′[Q], hence C ′[fst(Q)]
= fst(C ′[Q]) R snd(C ′[Q]) = C ′[snd(Q)]. 2

Our plan is to establish the hypothesis of Theorem 1 by automatically verifying
that all the biprocesses P in question meet conditions that imply uniformity. The next
corollary details those conditions, which guarantee that a communication and an eval-
uation, respectively, succeed in fst(P ) if and only if they succeed in snd(P ):

Corollary 1 Let P0 be a closed biprocess. Suppose that, for all plain evaluation con-
texts C, all evaluation contexts C ′, and all reductions C[P0] →

∗ P ,

1. if P ≡ C ′[N〈M〉.Q | N ′(x).R], then Σ ` fst(N) = fst(N ′) if and only if
Σ ` snd(N) = snd(N ′),

2. if P ≡ C ′[let x = D in Q else R], then there exists M1 such that fst(D)⇓M1

if and only if there exists M2 such that snd(D)⇓M2.

Then P0 satisfies observational equivalence.

Proof We show that P is uniform, then we conclude by Theorem 1. Let us show that,
if fst(P ) → P ′

1 then there exists a biprocess P ′ such that P → P ′ and fst(P ′) ≡ P ′
1.

The case for snd(P ) → P ′
2 is symmetric.

By induction on the derivation of fst(P ) → P ′
1, we first show that there exist C, Q,

and Q′
1 such that P ≡ C[Q], P ′

1 ≡ fst(C)[Q′
1], and fst(Q) → Q′

1 using one of the four
process rules (Red I/O), (Red Fun 1), (Red Fun 2), or (Red Repl): every step in this
derivation trivially commutes with fst, except for structural steps that involve a parallel
composition and a restriction, in case a ∈ fn(P ) but a /∈ fn(fst(P )). In that case, we
use a preliminary renaming from a to some fresh a′ /∈ fn(P ).

For each of these four rules, relying on a hypothesis of Corollary 1, we find Q′ such
that fst(Q′) = Q′

1 and Q → Q′ using the corresponding biprocess rule:

(Red I/O): We have Q = N〈M〉.R | N ′(x).R′ with Σ ` fst(N) = fst(N ′) and Q′
1 =

fst(R) | fst(R′){fst(M)/x}. For Q′ = R | R′{M/x}, we have fst(Q′) = Q′
1

and, by hypothesis 1, Σ ` snd(N) = snd(N ′), hence Q → Q′.

(Red Fun 1): We have Q = let x = D in R else R′ with fst(D)⇓M1 and Q′
1 =

fst(R){M1/x}. By hypothesis 2, snd(D)⇓M2 for some M2. We take Q′ =
R{diff[M1,M2]}, so that fst(Q′) = Q′

1 and Q → Q′.

(Red Fun 2): We have Q = let x = D in R else R′ with no M1 such that fst(D)⇓M1

and Q′
1 = fst(R′). By hypothesis 2, there is no M2 such that snd(D)⇓M2. We

obtain Q → Q′ for Q′ = R′.

(Red Repl): We have Q = !R and Q′
1 = fst(R) | !fst(R). We take Q′ = R | !R, so

that fst(Q′) = Q′
1 and Q → Q′.

To conclude, we take the biprocess P ′ = C[Q′] and the reduction P → P ′. 2
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Thus, we have a sufficient condition for observational equivalence of biprocesses.
This condition is essentially a reachability condition on biprocesses. Starting in Sec-
tion 5, we adapt existing techniques for reasoning about processes in order to prove
this condition. The condition is however not necessary: as suggested in the introduc-
tion, if P ∼ Q, then if diff[true, false] = true then P else Q satisfies observational
equivalence, but Theorem 1 and Corollary 1 will not enable us to prove this fact.

4 Examples in the applied pi calculus

This section illustrates our approach by revisiting examples of observational equiva-
lences presented with the applied pi calculus [6]. Interestingly, all those equivalences
can be formulated using biprocesses, proved via Theorem 1 and, it turns out, verified
automatically by ProVerif. Section 9 presents more complex examples.

We begin with equivalences that can be expressed with biprocesses that perform
a single output, of the form (νa1, . . . , ak)c〈M〉 where c is a name that does not oc-
cur in a1, . . . , ak or in M . Intuitively, such equivalences state that no environment
can differentiate fst(M) from snd(M) without knowing some name in a1, . . . , ak.
Such equivalences on terms under restrictions are called static equivalences [6]. They
arise when one considers attackers that first intercept a series of messages, then at-
tempt to differentiate two configurations of the protocol by computing on those mes-
sages without interacting with the protocol further. Here, the term M may be a tuple
diff[M1,M

′
1], . . . , diff[Mn,M ′

n] that collects all pairs of intercepted messages, and
a1 ,. . . , ak may be names that represent all local secrets and fresh values used by the
protocol.

Static equivalences play a central role in the extension of proof techniques from the
pure pi calculus to the applied pi calculus. In particular, observational equivalence in
the applied pi calculus can be reduced to standard pi calculus requirements plus static
equivalences [6]. In other words, proofs of observational equivalences can be decom-
posed into lemmas that deal with terms and general arguments that relate processes
with different structures; the former depend on the signature, while the latter come
from the pure pi calculus. In our experience, a large fraction of the proof effort is typi-
cally devoted to those lemmas on terms, and Theorem 1 is a good tool for establishing
them.

Example 1 Consider a cryptographic hash function, modelled as a constructor h with
neither rewrite rule nor equation. The environment should not be able to distinguish
a freshly generated random value, modelled as a fresh name a, from its hash h(a) [6,
Section 4.2]. Formally, using the automated technique presented in this paper, we ver-
ify that the biprocess (νa)c〈diff[a, h(a)]〉 satisfies equivalence. On the other hand,
P = (νa, a′)c〈(a, diff[a′, h(a)])〉 does not satisfy equivalence: although both pro-
cesses emit a pair of fresh terms, the environment can distinguish one process from
the other by computing a hash of the first element of the pair and comparing it to the
second element of the pair, using the context

C[ ] = c(x, y).if y = h(x) then d〈c〉 else 0 | [ ]
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With our biprocess semantics, C[P ] performs a (Red I/0) step then gets stuck on the
test (νa, a′)if diff[a′, h(a)] = h(a) then d〈c〉 else 0. 2

Example 2 Diffie-Hellman computations used in key agreement protocols can be ex-
pressed in terms of a constant b, a binary constructor ˆ, and the equation (bˆx)ˆy =
(bˆy)ˆx [4, 6]. With this signature, we verify that

(νa1, a2, a3)c〈(bˆa1, bˆa2, diff[(bˆa1)ˆa2, bˆa3])〉

satisfies equivalence. This equivalence closely corresponds to the Decisional Diffie-
Hellman assumption often made by cryptographers; it is also the main lemma in the
proof of [6, Theorem 3]. Intuitively, even if the environment is given access to the expo-
nentials bˆa1 and bˆa2, those values are (apparently) unrelated to the Diffie-Hellman
secret (bˆa1)ˆa2, since the environment cannot distinguish this secret from the expo-
nential of any fresh unrelated value a3. 2

The remaining two examples concern applications beyond proofs of static equiva-
lences.

Example 3 Non-deterministic encryption is a variant of public-key encryption that
further protects the secrecy of the plaintext by embedding some additional, fresh value
in each encryption. It can be modelled using three functions for public-key decryption,
public-key encryption, and public-key derivation, linked by the equation

pdec(penc(x, pk(y), z), y) = x

where z is the additional parameter for the encryption. A key property of non-deter-
ministic encryption is that, without knowledge of the decryption key, ciphertexts ap-
pear to be unrelated to the plaintexts, even if the attacker knows the plaintexts and
the encryption key. A strong version of this property is that the ciphertexts cannot be
distinguished from freshly generated random values. Formally, we state that

(νs)(c〈pk(s)〉 | !c′(x).(νa)c〈diff[penc(x, pk(s), a), a]〉)

satisfies equivalence. This biprocess is more complex than those presented above; in-
stead of a single output, it performs a first output to reveal the public key pk(s) (but
not s!), then repeatedly inputs a term x from the environment and either outputs its
encryption under pk(s) or outputs a fresh, unrelated name. Thus, a single biprocess
represents the family of static equivalences that relate a series of non-deterministic en-
cryptions for any series of plaintext to a series of fresh, independent names. (Formally,
each such equivalence can be obtained as a corollary of this biprocess equivalence, by
applying the congruence property of equivalence for the particular context that sends
the plaintexts of values on channel c′ and reads the encryption key and encryptions on
channel c.) 2

Example 4 Biprocesses can also be used for relating an abstract specification of a
cryptographic primitive with its implementation in terms of lower-level functions. As
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an example, we consider the construction of message authentication codes (MACs)
for messages of arbitrary length, as modelled in the applied pi calculus [6, Section 6].
MAC functions are essentially keyed hash functions; MACs should not be subject to
tampering or forgery. More formally, the usage of MACs can be captured via a little
protocol that generates MACs on demand and checks them:

P0 = (νk)(!c′(x).c〈x,mac(k, x)〉
| c(x, y).if y = mac(k, x) then c′′〈x〉)

The unforgeability of MACs means that the MAC checker succeeds and forwards a
message x on c′′ only if a MAC has been generated for x by sending it to the MAC
generator on c′.

Let P be P0 with the term diff[mac(k, x), impl(k, x)] instead of the two occur-
rences of mac(k, x). For a given signature with no equation for mac, a function
impl may be said to implement mac correctly when P satisfies equivalence. With
this formulation, we can verify the correctness of the second construction consid-
ered in [6], impl(k, x) = f(k, f(k, x)), with equation f(k, (x, y)) = h(f(k, x), y),
where f is a keyed hash function that iterates a compression function h on the message
blocks. We can also confirm that the first construction considered in [6], impl(k, x) =
f(k, x) with the same equation f(k, (x, y)) = h(f(k, x), y), is subject to a stan-
dard extension attack: anyone that obtains the MAC impl(k,N1) can produce the
MAC impl(k, (N1, N2)) as h(impl(k,N1), N2) for any message extension N2 without
knowing k. 2

5 Modelling equations with rewrite rules

We handle equations by translating from a signature with equations to a signature with-
out equations. This translation is designed to ease implementation: with it, resolution
can continue to rely on ordinary syntactic unification, and remains very efficient. Al-
though our technique is general and automatic, it does have limitations: it does not
apply to some equational theories, in particular theories with associative symbols such
as XOR. (It may be possible to handle some of those theories by shifting from syn-
tactic unification to unification modulo the theory in question, at the cost of increased
complexity.)

5.1 Definitions

We consider an auxiliary rewriting system on terms, S, that defines partial normal
forms. The terms manipulated by S do not contain diff, but they may contain variables.
The rules of S do not contain names and do not have a single variable on the left-hand
side. We say that a term is irreducible by S when none of the rewrite rules of S applies
to it; we say that the set of terms M is in normal form relatively to S and Σ, and write
nfS,Σ(M), if and only if all terms of M are irreducible by S and, for all subterms N1

and N2 of terms of M, if Σ ` N1 = N2 then N1 = N2. Intuitively, we allow for
the possibility that terms may have several irreducible forms (see Example 6 below),
requiring that M use irreducible forms consistently. This requirement implies, for
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instance, that if the rewrite rule f(x, x) → x applies modulo the equational theory to
a term f(N1, N2) then N1 and N2 are identical and the rule f(x, x) → x also applies
without invoking the equational theory. We extend the definition of nfS,Σ(·) to sets of
processes: nfS,Σ(P) if and only if the set of terms that appear in processes in P is in
normal form.

For a signature Σ′ (without equations), we define evaluation on open terms as a
relation D ⇓′ (M,σ), where σ collects instantiations of D obtained by unification:

M ⇓′ (M, ∅)

eval h(D1, . . . , Dn) ⇓′ (σuN,σuσ′)
if (D1, . . . , Dn) ⇓′ ((M1, . . . ,Mn), σ′),
h(N1, . . . , Nn) → N is in defΣ′(h) and
σu is a most general unifier of (M1, N1), . . . , (Mn, Nn)

(D1, . . . , Dn) ⇓′ ((σnM1, . . . , σnMn−1,Mn), σnσ)
if (D1, . . . , Dn−1) ⇓

′ ((M1, . . . ,Mn−1), σ) and σDn ⇓′ (Mn, σn)

As suggested in Section 2, we rely on eval for indicating term evaluations: while
f(M1, . . . ,Mn) ⇓′ (f(M1, . . . ,Mn), ∅), deriving eval f(M1, . . . ,Mn) ⇓′ (M,σ)
requires an application of a rewrite rule for the constructor f .

We let addeval(M1, . . . ,Mn) be the tuple of term evaluations obtained by adding
eval before each function symbol of M1, . . . , Mn. Using these definitions, we describe
when a signature Σ′ with rewrite rules models another signature Σ with equations:

Definition 4 Let Σ and Σ′ be signatures on the same function symbols. We say that
Σ′ models Σ if and only if

1. The equational theory of Σ′ is syntactic equality: Σ′ ` M = N if and only if
M = N .

2. The constructors of Σ′ are the constructors of Σ; their definition defΣ′(f) con-
tains the rule f(x1, . . . , xn) → f(x1, . . . , xn), plus perhaps other rules such that
there exists a rewriting system S on terms that satisfies the following properties:

S1. If M → N is in S, then Σ ` M = N .

S2. If nfS,Σ(M), then for any term M there exists M ′ such that Σ ` M ′ = M
and nfS,Σ(M∪ {M ′}).

S3. If f(N1, . . . , Nn) → N is in defΣ′(f), then Σ ` f(N1, . . . , Nn) = N .

S4. If Σ ` f(M1, . . . ,Mn) = M and nfS,Σ({M1, . . . ,Mn,M}), then there
exist σ and f(N1, . . . , Nn) → N in defΣ′(f) such that M = σN and
Mi = σNi for all i ∈ {1, . . . , n}.

3. The destructors of Σ′ are the destructors of Σ, with a rule g(M ′
1, . . . ,M

′
n) → M ′

in defΣ′(g) for each g(M1, . . . ,Mn) → M in defΣ(g) and each addeval(M1,
. . . ,Mn,M) ⇓′ ((M ′

1, . . . ,M
′
n,M ′), σ).
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Condition 1 says that the equational theory of Σ′ is trivial. In Condition 2, Proper-
ties S1 and S2 concern the relation of S and Σ. Property S1 guarantees that all rewrite
rules of S are sound according to the equational theory of Σ. Property S2 requires there
are “enough” normal forms: that for every term M there is an S-irreducible Σ-equal
term M ′, and that M ′ can be chosen consistently with a set M in normal form. Prop-
erties S3 and S4 concern the definition of constructors in Σ′. Property S3 guarantees
that the rewrite rules that define the constructors are sound according to the equational
theory of Σ. Property S4 requires that there are “enough” rewrite rules: basically, that
when M1, . . . , Mn are in normal form, every normal form of f(M1, . . . ,Mn) can be
generated by applying a rewrite rule for f in Σ′ to f(M1, . . . ,Mn). Finally, according
to Condition 3, the definition of destructors in Σ′ can be computed by applying the
rewrite rules of constructors in Σ′ to the definition of destructors in Σ.

According to this definition, we deal with any equations on f in Σ by evaluating f
once in Σ′. (We use eval markers in expressions accordingly: eval f and f represent
f before and after this evaluation, respectively.) This characteristic entails a limitation
of our approach. For instance, suppose that we have f(f ′(x)) = f ′(f(x)) in the
equational theory of Σ, and we want a Σ′ that models Σ. In Σ′, we should equate
f ′(f(. . . f(a))) and f(. . . f(f ′(a))) by one reduction step, so we need one rewrite
rule for each length of sequence of applications of f , so defΣ′(f ′) cannot be finite.
Associative symbols like XOR pose a similar problem.

5.2 Examples

The following two examples illustrate the definitions of Section 5.1. ProVerif handles
these examples automatically, using the approach of Section 5.3.

Example 5 Suppose that Σ has the constructors enc and dec with the equations

dec(enc(x, y), y) = x enc(dec(x, y), y) = x

In Σ′, we adopt the rewrite rules:

dec(x, y) → dec(x, y) enc(x, y) → enc(x, y)
dec(enc(x, y), y) → x enc(dec(x, y), y) → x

We have that Σ′ models Σ for the rewriting system S with rules dec(enc(x, y), y) → x
and enc(dec(x, y), y) → x, and a single normal form for every term. 2

Example 6 In order to model the Diffie-Hellman equation of Example 2, we define Σ′

with three rewrite rules:

b → b xˆy → xˆy (bˆx)ˆy → (bˆy)ˆx

and use an empty S. Intuitively, applying ˆ to (bˆx) and y yields both possible forms
of (bˆx)ˆy modulo the equational theory, (bˆx)ˆy and (bˆy)ˆx. Hence, a term M
may have several irreducible forms M ′ that satisfy nfS,Σ({M ′}) and Σ ` M ′ = M :
one can choose (bˆN)ˆN ′ or (bˆN ′)ˆN . 2
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5.3 Algorithms

Next we explain a method for finding, for a given signature Σ, a signature Σ′ that
models Σ and a corresponding rewriting system S. This method is embodied in algo-
rithms that, when they terminate, yield the definition of defΣ′(f) for each constructor
of Σ. The definition of defΣ′(g) for each destructor of Σ follows from Condition 3 of
Definition 4. These algorithms do not always terminate because, for some equational
theories, they generate an unbounded number of rewrite rules. However, they often
terminate in practice, as our examples illustrate; moreover, Lemma 7 in Appendix A.2
establishes a termination result for a significant class of theories, the convergent sub-
term theories [5].

Our first algorithm handles convergent (terminating and confluent) theories. It ap-
plies, for instance, to Example 5. Here and elsewhere, we write T for a term context (a
term with a hole).

Algorithm 1 (Convergent theories) Let Mi = Ni (for i ∈ {1, . . . ,m}) be the equa-
tions that define the equational theory of Σ. Let S be defined by the rewrite rules
Mi → Ni. Assume that S is convergent, and let M↓ be the normal form of M rela-
tively to S.

When E is a set of rewrite rules, we define normalize(E) by
– replacing each rule f(M1, . . . ,Mn) → N of E with f(M1↓, . . . ,Mn↓) → N↓;
– removing rules of the form M → M from E;
– if M → N is in E, removing all other rules of the form T [σM ] → T [σN ] from E.

Let E = normalize(S).
Repeat until E reaches a fixpoint

For each pair of rules M → M ′ and N → N ′ in E and each T
such that M ′ = T [M ′′], M ′′ is not a variable,
and σu is the most general unifier of M ′′ and N ,

set E = normalize(E ∪ {σuM → σuT [σuN ′]}).
For each constructor f ,

defΣ′(f) = {f(M1, . . . ,Mn)→N ∈ E} ∪ {f(x1, . . . , xn) → f(x1, . . . , xn)}.

In this algorithm, we add to E new rewrite rules obtained by composing two rewrite
rules of E, until a fixpoint is reached. Lemma 7 in Appendix A.2 shows that a fixpoint
is reached immediately for convergent subterm theories.

Before running the algorithm, we can check that S is convergent as follows.

• The termination of S can be established via a reduction ordering >, by showing
that if M → M ′ is in S, then M > M ′. In the implementation, we use a
lexicographic path ordering.

• The confluence of S can be established via the critical-pair theorem, by showing
that all critical pairs are joinable [31].

Alternatively, one could use the Knuth-Bendix completion algorithm in order to trans-
form a rewriting system into a convergent one.

Our next algorithm handles linear theories, such as that of Example 6.
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Algorithm 2 (Linear theories) Let Σ be a signature such that all equations of Σ are
linear: each variable occurs at most once in the left-hand side and at most once in the
right-hand side. Let S be empty.

When E is a set of rewrite rules, we define normalize(E) by:
– removing rules of the form M → M from E;
– if M → N is in E, removing all other rules of the form T [σM ] → T [σN ] from E.

Let E = normalize({M → N,N → M | M = N is an equation of Σ}).
Repeat until E reaches a fixpoint

For each pair of rules M → M ′ and N → N ′ in E and each T
such that M ′ = T [M ′′], M ′′ and N are not variables,
and σu is the most general unifier of M ′′ and N ,

set E = normalize(E ∪ {σuM → σuT [σuN ′]}).
For each pair of rules M → M ′ and N → N ′ in E and each T

such that N = T [N ′′], M ′ and N ′′ are not variables,
and σu is the most general unifier of M ′ and N ′′,

set E = normalize(E ∪ {σuT [σuM ] → σuN ′}).
For each constructor f ,

defΣ′(f) = {f(M1, . . . ,Mn) → N ∈ E} ∪ {f(x1, . . . , xn) → f(x1, . . . , xn)}.

In this algorithm, when two rewrite rules of E have a critical pair with one another,
we compose them and add the result to E.

Algorithms 1 and 2 are similar. The main difference is that Algorithm 1 performs
additional optimizations that are sound for convergent rewriting systems but not for
linear equational theories. In particular, in the initial definition of E, Algorithm 1
considers rewrite rules oriented only in the direction of S, while Algorithm 2 considers
both directions. Furthermore, in Algorithm 1, normalize reduces the right-hand sides
and the strict subterms of the left-hand sides of rewrite rules by S, while Algorithm 2
does not include this reduction. As a consequence, the second way of combining rules
of E in Algorithm 2 is not necessary in Algorithm 1, since the rules thus created would
be reduced by normalize into an instance of an already existing rule.

Our final algorithm combines the two previous ones:

Algorithm 3 (Union) Let Σ be a signature.
Split the set of equations of Σ into subsets Ei that use disjoint sets of constructors.
Let Econv be the union of those subsets Ei that we can prove convergent.
Let Elin be the union of those subsets Ei that are linear and are not in Econv.
If some subsets Ei are neither in Econv nor in Elin, then fail.
Apply Algorithm 1 to Econv, obtaining the rewriting system Sconv and the definition
defΣ′(f) of the constructors of Econv.
Apply Algorithm 2 to Elin, obtaining the definition defΣ′(f) of the constructors of Elin.
Let S = Sconv.

The following theorem says that these three algorithms are correct. It is proved in
Appendix A.
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Theorem 2 If Algorithm 1, 2, or 3 produces a signature Σ′ from a signature Σ, then
Σ′ models Σ.

5.4 Reductions with equations and rewrite rules

From this point on, we assume that Σ′ models Σ. We extend equality modulo Σ from
terms to biprocesses and term evaluations: Σ ` P = P ′ if and only if P ′ can be
obtained from P by replacing some of its subterms M (not containing diff or eval)
with subterms equal modulo Σ. We define Σ ` D = D′ similarly. Finally, we define
P →Σ′,Σ P ′ as P →Σ P ′ except that signature Σ′ is used for reduction rules (Red
I/O) and (Red Fun 1)—signature Σ is still used for (Red Fun 2).

We say that a biprocess P0 is unevaluated when every term in P0 is either a variable
or diff[a, a] for some name a. Hence, every function symbol in P0 must be in a term
evaluation and prefixed by eval. For any biprocess P , we can build an unevaluated
biprocess unevaluated(P ) by introducing a term evaluation for every non-trivial term
and a diff for every name (with P ≈ unevaluated(P )). For instance, the unevaluated
biprocess built from the process of Example 3 is:

(νs)(let y = eval pk(diff[s, s]) in diff[c, c]〈y〉 |

!diff[c′, c′](x).(νa)

let z = diff[eval enc(x, eval pk(diff[s, s]), diff[a, a]), diff[a, a]] in diff[c, c]〈z〉)

Lemma 1 Let P0 be a closed, unevaluated biprocess. If P0 →∗
Σ≡ P ′

0, Σ ` P ′
0 = P ′,

and nfS,Σ({P ′}), then P0 →∗
Σ′,Σ≡ P ′. Conversely, if P0 →∗

Σ′,Σ≡ P ′ then there
exists P ′

0 such that Σ ` P ′
0 = P ′ and P0 →∗

Σ≡ P ′
0.

This lemma gives an operational correspondence between →Σ and →Σ′,Σ. A similar
lemma holds for processes instead of biprocesses, and can be used for extending pre-
vious proof techniques for secrecy [3] and correspondence [16] properties, so that they
apply under equational theories. These extensions are implemented in ProVerif. We do
not detail them further since we focus on equivalences in this paper. Using Lemma 1,
we obtain:

Lemma 2 A closed biprocess P0 satisfies the conditions of Corollary 1 if and only
if, for all plain evaluation contexts C, all evaluation contexts C ′, and all reductions
unevaluated(C[P0]) →

∗
Σ′,Σ P , we have

1. if P ≡ C ′[N〈M〉.Q | N ′(x).R] and fst(N) = fst(N ′), then Σ ` snd(N) =
snd(N ′),

2. if P ≡ C ′[let x = D in Q else R] and fst(D)⇓Σ′ M1 for some M1, then
snd(D)⇓Σ M2 for some M2,

as well as the symmetric properties where we swap fst and snd.

The lemmas above are proved in Appendix B.
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6 Clause generation

Given a closed biprocess P0, our protocol verifier builds a set of Horn clauses. This
section explains the generation of the clauses, substantially extending to biprocesses
previous work at the level of processes.

6.1 Patterns and facts

In the clauses, the terms of processes are represented by patterns, with the following
grammar:

p ::= patterns
x, y, z, i variable
f(p1, . . . , pn) constructor application
a[p1, . . . , pn] name
g element of GVar

We assign a distinct, fresh session identifier variable i to each replication of P0.
(We will use a distinct value for i for each copy of the replicated process.) We assign
a pattern a[p1, . . . , pn] to each name a of P0. We treat a as a function symbol, and
write a[p1, . . . , pn] rather than a(p1, . . . , pn) only for clarity. We sometimes write a
for a[ ]. If a is a free name, then its pattern is a[ ]. If a is bound by a restriction (νa)
in P0, then its pattern takes as arguments the terms received as inputs, the results of
term evaluations, and the session identifiers of replications in the context that encloses
the restriction. For example, in the process !c′(x).(νa)P , each name created by (νa)
is represented by a[i, x] where i is the session identifier for the replication and x is the
message received as input in c′(x). We assume that each restriction (νa) in P0 has
a different name a, distinct from any free name of P0. Moreover, session identifiers
enable us to distinguish names created in different copies of processes. Hence, each
name created in the process calculus is represented by a different pattern in the verifier.

Patterns include an infinite set of constants GVar . These constants are basically
universally quantified variables, and occur only in arguments of the predicate nounif ,
defined in Definition 5 below. We write GVar(M) for the term obtained from M by
replacing the variables of M with new constants in the set GVar .

Clauses are built from the following predicates:

F ::= facts
att′(p, p′) attacker knowledge
msg′(p1, p2, p

′
1, p

′
2) output message p2 on p1 (resp. p′2 on p′1)

input′(p, p′) input on p (resp. p′)
nounif(p, p′) impossible unification
bad bad

Informally, att′(p, p′) means that the attacker may obtain p in fst(P ) and p′ in snd(P )
by the same operations; msg′(p1, p2, p

′
1, p

′
2) means that message p2 may appear on

channel p1 in fst(P ) and that message p′2 may appear on channel p′1 in snd(P ) after
the same reductions; input′(p, p′) means that an input may be executed on channel p
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in fst(P ) and on channel p′ in snd(P ), thus enabling the attacker to infer whether
p (resp. p′) is equal to another channel used for output; nounif(p, p′) means that p
and p′ cannot be unified modulo Σ by substituting elements of GVar with patterns;
finally, bad serves in detecting violations of observational equivalence: when bad is
not derivable, we have observational equivalence.

An evident difference with respect to previous translations from processes to clauses
is that predicates have twice as many arguments: we use the binary predicate att′ in-
stead of the unary one att and the 4-ary predicate msg′ instead of the binary one msg.
This extension allows us to represent information for both variants of a biprocess.

The predicate nounif is not defined by clauses, but by special simplification steps
in the solver, defined in Section 7.

Definition 5 Let p and p′ be closed patterns. The fact nounif(p, p′) holds if and only
if there is no closed substitution σ with domain GVar such that Σ ` σp = σp′.

6.2 Clauses for the attacker

The following clauses represent the capabilities of the attacker:

For each a ∈ fn(P0), att′(a[ ], a[ ]) (Rinit)

For some b that does not occur in P0, att′(b[x], b[x]) (Rn)

For each function h, for each pair of rewrite rules

h(M1, . . . ,Mn) → M and h(M ′
1, . . . ,M

′
n) → M ′

in defΣ′(h) (after renaming of variables),

att′(M1,M
′
1) ∧ . . . ∧ att′(Mn,M ′

n) → att′(M,M ′)

(Rf)

msg′(x, y, x′, y′) ∧ att′(x, x′) → att′(y, y′) (Rl)

att′(x, x′) ∧ att′(y, y′) → msg′(x, y, x′, y′) (Rs)

att′(x, x′) → input′(x, x′) (Ri)

input′(x, x′) ∧ msg′(x, z, y′, z′) ∧ nounif(x′, y′) → bad (Rcom)

For each destructor g,
for each rewrite rule g(M1, . . . ,Mn) → M in defΣ′(g),

∧

g(M ′

1
,...,M ′

n)→M ′ in def
Σ′ (g)

nounif((x′
1, . . . , x

′
n),GVar((M ′

1, . . . ,M
′
n)))

∧ att′(M1, x
′
1) ∧ . . . ∧ att′(Mn, x′

n) → bad

(Rt)

plus symmetric clauses (Rcom′) and (Rt′) obtained from (Rcom) and (Rt) by swapping
the first and second arguments of input′ and att′ and the first and third arguments
of msg′.

Clause (Ri) means that, if the attacker has x (resp. x′), then it can attempt an input
on x (resp. x′), thereby testing whether it is equal to some other channel used for output.
Clauses (Rcom) and (Rcom′) detect when a communication can occur in one variant
of the biprocess and not in the other: the input and output channels are equal in one
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variant and different in the other. These clauses check that condition 1 of Lemma 2 and
its symmetric are true.

Clause (Rt) checks that for all applications of a destructor g, if this application suc-
ceeds in fst(P ), then it succeeds in snd(P ), possibly using another rule. Clause (Rt′)
checks the converse. These two clauses are essential for obtaining condition 2 of
Lemma 2. Consider, for instance, the destructor equals of Section 2.2. After a mi-
nor simplification, Clauses (Rt) and (Rt′) become

att′(x, y) ∧ att′(x, y′) ∧ nounif(y, y′) → bad (1)

att′(y, x) ∧ att′(y′, x) ∧ nounif(y, y′) → bad (2)

The other clauses are adapted from previous work [3, 16] by replacing unary (resp.
binary) predicates with binary (resp. 4-ary) ones. Clause (Rinit) indicates that the
attacker initially has all free names of P0. Clause (Rn) means that the attacker can
generate fresh names b[x]. Clause (Rf) mean that the attacker can apply all func-
tions to all terms it has. In this clause, the rewrite rules h(M1, . . . ,Mn) → M and
h(M ′

1, . . . ,M
′
n) → M ′ may be different elements of defΣ′(h); their variables are re-

named so that M1, . . . ,Mn,M on the one hand and M ′
1, . . . ,M

′
n,M ′ on the other

hand do not share variables. Clause (Rl) means that the attacker can listen on all the
channels it has, and (Rs) that it can send all the messages it has on all the channels it
has.

6.3 Clauses for the protocol

The translation [[P ]]ρss′H of a biprocess P is a set of clauses, where ρ is an envi-
ronment that associates a pair of patterns with each name and variable, s and s′ are
sequences of patterns, and H is a sequence of facts. The empty sequence is written ∅;
the concatenation of a pattern p to the sequence s is written s, p; the concatenation of
a fact F to the sequence H is written H ∧ F . When ρ associates a pair of patterns
with each name and variable, and f is a constructor, we extend ρ as a substitution by
ρ(f(M1, . . . ,Mn)) = (f(p1, . . . , pn), f(p′1, . . . , p

′
n)) where ρ(Mi) = (pi, p

′
i) for all

i ∈ {1, . . . , n}. We denote by ρ(M)1 and ρ(M)2 the components of the pair ρ(M).
We let ρ(diff[M,M ′]) = (ρ(M)1, ρ(M ′)2). We define [[P ]]ρss′H as follows:

[[0]]ρss′H = ∅

[[!P ]]ρss′H = [[P ]]ρ(s, i)(s′, i)H

where i is a fresh variable

[[P | Q]]ρss′H = [[P ]]ρss′H ∪ [[Q]]ρss′H

[[(νa)P ]]ρss′H = [[P ]](ρ[a 7→ (a[s], a[s′])])ss′H

[[M(x).P ]]ρss′H =

[[P ]](ρ[x 7→ (x′, x′′)])(s, x′)(s′, x′′)(H ∧ msg′(ρ(M)1, x
′, ρ(M)2, x

′′))

∪ {H → input′(ρ(M)1, ρ(M)2)}

where x′ and x′′ are fresh variables

[[M〈N〉.P ]]ρss′H = [[P ]]ρss′H ∪ {H → msg′(ρ(M)1, ρ(N)1, ρ(M)2, ρ(N)2)}
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[[let x = D in P else Q]]ρss′H =
⋃

{[[P ]]((σρ)[x 7→ (p, p′)])(σs, p)(σs′, p′)(σH) | (ρ(D)1, ρ(D)2) ⇓
′ ((p, p′), σ)}

∪ [[Q]]ρss′(H ∧ ρ(fails(fst(D)))1 ∧ ρ(fails(snd(D)))2)

∪ {σH ∧ σρ(fails(snd(D)))2 → bad | ρ(D)1 ⇓′ (p, σ)}

∪ {σH ∧ σρ(fails(fst(D)))1 → bad | ρ(D)2 ⇓′ (p′, σ)}

where fails(D) =
∧

σ|D ⇓′(p,σ) nounif(D,GVar(σD))

In the translation, the environment ρ maps names and variables to their correspond-
ing pair of patterns—one pattern for each variant of the biprocess. The sequences s
and s′ contain all input messages, session identifiers, and results of term evaluations in
the enclosing context—one sequence for each variant of the biprocess. They are used
in the restriction case (νa)P , to build patterns a[s] and a[s′] that correspond to the
name a. The sequence H contains all facts that must be true to run the current process.

The clauses generated are similar to those of [16], but clauses are added to indicate
which tests the adversary can perform, and predicates have twice as many arguments.

• Replication creates a new session identifier i, added to s and s′. Replication
is otherwise ignored, since Horn clauses can be applied any number of times
anyway.

• In the translation of an input, the sequence H is extended with the input in ques-
tion and the environment ρ with a binding of x to a new variable x′ in variant 1,
x′′ in variant 2. Moreover, a new clause H → input′(ρ(M)1, ρ(M)2) is added,
indicating that when all conditions in H are true, an input on channel M may
be executed. This input may enable the adversary to infer that M is equal to
some channel used for output; Clauses (Rcom) or (Rcom′) derive bad when this
information may break equivalence.

• The output case adds a clause stating that message N may be sent on channel M .

• Finally, the clauses for a term evaluation are the union of clauses for the cases
where the term evaluation succeeds on both sides (then we execute P ), where
the term evaluation fails on both sides (then we execute Q), and where the term
evaluation fails on one side and succeeds on the other (then we derive bad). In-
deed, in the last case, the adversary may get to know whether the term evaluation
succeeds or fails (when the code executed in the success case is visibly different
from the code executed in the failure case).

Example 7 The biprocess of Example 3 yields the clauses:

msg′(c, pk(s), c, pk(s))

msg′(c′, x, c′, x′) → msg′(c, penc(x, pk(s), a[i, x]), c, a[i, x′])

The first clause corresponds to the output of the public key pk(s). The second clause
corresponds to the other output: if a message x (resp. x′) is received on channel c′,
then the message penc(x, pk(s), a[i, x]) in the first variant (resp. a[i, x′] in the second
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variant) is sent on channel c. The encoding of the fresh name a as a pattern a[i, x] is
explained in Section 6.1. 2

Example 8 The process c(x).let y = eval dec(x, a) in c〈y〉, where dec is a destructor
defined by dec(enc(x, y), y) → x, yields the clauses:

msg′(c, enc(y, a), c, x′) ∧ nounif(x′, enc(g, a)) → bad

msg′(c, x, c, enc(y′, a)) ∧ nounif(x, enc(g, a)) → bad

msg′(c, enc(y, a), c, enc(y′, a)) → msg′(c, y, c, y′)

In the first clause, a message received on c is of the form enc(y, a) in the first variant but
not in the second variant; decryption succeeds only in the first variant, so the process is
not uniform and we derive bad. The second clause is the symmetric case. In the third
clause, decryption succeeds in both variants, and yields an output on channel c. 2

6.4 Proving equivalences

Let ρ0 = {a 7→ (a[ ], a[ ]) | a ∈ fn(P0)}. We define the set of clauses that corresponds
to biprocess P0 as:

RP0
= [[unevaluated(P0)]]ρ0∅∅∅ ∪ {(Rinit), (Rn), . . . , (Rt), (Rt′)}

The following result is proved in Appendix D. It shows the soundness of the translation.

Theorem 3 If bad is not a logical consequence of RP0
, then P0 satisfies observational

equivalence.

When bad is a logical consequence of RP0
, the derivation of bad from RP0

can serve
for reconstructing a violation of the hypothesis of Corollary 1, via an extension of re-
cent techniques for secrecy analysis [10]. However, the translation of protocols to Horn
clauses performs safe abstractions that sometimes result in false counterexamples: the
Horn clauses can be applied any number of times, so the translation ignores the number
of repetitions of actions. For instance, (νc)(c〈M〉 | c(x).c(x).P ) satisfies equivalence
for any P because P is never executed, and (νc)(c〈diff[M1,M2]〉 | c(x).d〈c〉) satisfies
equivalence for any M1 and M2 because its diff disappears before the attacker obtains
channel c. Our technique cannot prove these equivalences in general. The latter ex-
ample illustrates that our technique typically fails for biprocesses that first keep some
value secret and later reveal it. The reason for the failures on (νc)(c〈M〉 | c(x).c(x).P )
and (νc)(c〈diff[M1,M2]〉 | c(x).d〈c〉) is that the translation to classical Horn clauses
basically treats these two biprocesses like variants with additional replications, namely
(νc)(!c〈M〉 | c(x).c(x).P ) and (νc)(!c〈diff[M1,M2]〉 | !c(x).d〈c〉) respectively, and
these variants do not necessarily satisfy equivalence. On the other hand, the safe ab-
stractions that the translation performs are crucial for the applicability of our technique
to infinite-state systems, which is illustrated by many of the examples in this paper.

We also have the following lemma, which is important for proving the soundness
of some simplification steps in the solving algorithm below, enabling us to work with
terms in normal form only. It is proved in Appendix C.
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Lemma 3 If bad is derivable from RP0
then bad is derivable from RP0

by a derivation
such that nfS,Σ(F) where F is the set of intermediately derived facts in this derivation,
excluding nounif facts.

7 Solving algorithm

In order to determine whether bad is a logical consequence of RP0
, we use an algo-

rithm based on resolution with free selection, adapting a previous algorithm [17].

7.1 The basic resolution algorithm

The algorithm infers new clauses by resolution, as follows. From two clauses R =
H → C and R′ = F ∧H ′ → C ′ (where F is any hypothesis of R′) such that C and F
are unifiable, with most general unifier σ, it infers R ◦F R′ = σH ∧ σH ′ → σC ′:

H → C F ∧ H ′ → C ′

σH ∧ σH ′ → σC ′

The clause R ◦F R′ is the combination of R and R′, in which R proves the hypothesis
F of R′. Resolution is guided by a selection function: sel(R) returns a subset of the
hypotheses of R, and the resolution step above applies only when sel(R) = ∅ and
F ∈ sel(R′). When sel(R) = ∅, we say that the conclusion of R is selected. In this
paper, we use the following selection rules:

• nounif(p1, p2) is never selected. (It is handled by special simplification steps.)

• bad is never selected, except in the clause bad, and in clauses whose hypotheses
are all of the form nounif(p1, p2). (If we select bad in a clause H → bad, then
the algorithm will fail to prove that bad is not derivable. That is why we avoid
selecting bad when possible.)

• att′(x, x′) with any variables x, x′ is selected only when no other fact can be
selected. (Our intent is to obtain termination, whereas facts att′(x, x′) can be
unified with all facts att′(p, p′) to generate many additional clauses.) In this case,
att′(x, x′) is selected preferably when x (or x′) occurs in a fact nounif(x, p′)
where p′ is not a variable. (When we select att′(x, x′), this fact will be unified
with some other fact, thus hopefully instantiating x, so that we make progress
determining whether nounif(x, p′) is true or not.)

7.2 General simplifications

As part of the algorithm, we apply a series of simplification functions on clauses. Some
of them are standard, such as the elimination of tautologies (performed by elimtaut)
and duplicate hypotheses (performed by elimdup). We omit their definitions. Others
are specific to our purpose:
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• Elimination of att′(x, y): elimattx removes hypotheses att′(x, y) when x and y
do not appear elsewhere in the clause, except possibly in nounif facts. The
variables x and y may be the same variable.

• Elimination of useless variables: elimvar transforms clauses of the form

R = att′(x, y) ∧ att′(x, y′) ∧ H → C

into R{y/y′}, when R is not Clause (1).

The soundness of elimvar can be established by cases. If we can derive facts
att′(px, py) and att′(px, py′) such that Σ ` py 6= py′ from the other clauses,
then we can derive bad by applying Clause (1), included in the clause base
as Clause (Rt) for g = equals. Otherwise, in any derivation of bad obtained
by Lemma 3, any application of R uses the same fact to match both att′(x, y)
and att′(x, y′), and the transformed clause also applies. (The clause R uses
att′(px, py) and att′(px, py′) with Σ ` py = py′ , hence py = py′ by the conclu-
sion of Lemma 3.)

The function elimvar also performs the symmetric simplification, relying on the
presence of Clause (2).

• Elimination of useless forms modulo equality: simpeq removes clauses that con-
tain a fact F that is not a nounif fact and is not in normal form relatively to S.
The soundness of this simplification follows from Lemma 3. A typical example
concerns decryption, when it is defined by an equation (as in Example 5): we
can remove any clause that contains dec(enc(y, x), x).

This simplification could be extended to clauses that contain several syntactically
different forms of the same term modulo the equational theory, although that
would be more difficult to implement.

7.3 Simplifications for nounif

These simplifications are adapted from those for testunif (from [17]).

• Unification: unify transforms clauses of the form H ∧ nounif(p1, p2) → C as
follows. For every nounif(p1, p2) hypothesis in turn, it tries to unify p1 and p2

modulo the equational theory, considering elements of GVar as variables. If this
unification fails, then the clause becomes H → C, because nounif(p1, p2) holds
when Σ ` σp1 6= σp2 for all σ. Otherwise, unify replaces the clause with

H ∧
n∧

j=1

nounif((xj
1, . . . , x

j
kj

), (σjx
j
1, . . . , σjx

j
kj

)) → C

where σ1, . . . , σn are the most general unifiers of p1 and p2 modulo the equa-
tional theory and xj

1, . . . , xj
kj

are all variables affected by σj . (These may include
elements of GVar .) In this unification, σj is built so that all variables in its do-
main and its image are variables of p1 and p2, and the variables in its domain
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do not occur in its image. Note that an instance of
∧n

j=1 nounif((xj
1, . . . , x

j
kj

),

(σjx
j
1, . . . , σjx

j
kj

)) is true if and only if the same instance of nounif(p1, p2)

is, because σp1 = σp2 if and only if there exists j ∈ {1, . . . , n} such that
σ(xj

1, . . . , x
j
kj

) = σσj(x
j
1, . . . , x

j
kj

), for all σ with domain GVar ∪ Var where
Var is the set of variables.

In order to compute unification modulo the equational theory of p1 and p2, we
rewrite both terms according to the rewrite rules for the function symbols that
they contain (generating some bindings for variables), then syntactically unify
the results. Formally, the most general unifiers of p1 and p2 modulo Σ are the
substitutions σuσ such that addeval(p1, p2) ⇓′ ((p′1, p

′
2), σ) and σu is the most

general unifier of p′1 and p′2.

For instance, with an empty equational theory, unify transforms the clause

H ∧ nounif((enc(x′, y′), z′), (enc(g, y), g)) → C

into
H ∧ nounif((x′, y′, z′), (g, y, g)) → C (3)

Assuming the equational theory of Example 6, unify transforms the clause

H ∧ nounif(xˆy, x′ˆy′) → C

into

H ∧ nounif((x, y), (x′, y′)) ∧ nounif((x, x′), (bˆy′, bˆy)) → C

• Swap: swap transforms facts nounif((p1, . . . , pn), (p′1, . . . , p
′
n)) in clauses ob-

tained after unify . When pi is a variable and p′i ∈ GVar , it swaps pi and p′i
everywhere in the nounif fact. Note that an instance of the new nounif fact
is true if and only if the same instance of the old one is, since the unification
constraints remain the same.

For instance, swap transforms Clause (3) into

H ∧ nounif((g, y′, z′), (x′, y, x′)) → C (4)

• Elimination of elements of GVar : elimGVar transforms facts nounif((p1, . . . ,
pn), (p′1, . . . , p

′
n)) in clauses obtained after unify and swap: when pi = g ∈

GVar , it eliminates the pair pi, p
′
i from the nounif fact.

An instance of the new nounif fact is true if and only if the same instance of the
old one is, because g ∈ GVar cannot occur elsewhere in the nounif fact. (This
property comes from the result of unify and is preserved by swap.)

For instance, elimGVar transforms Clause (4) into

H ∧ nounif((y′, z′), (y, x′)) → C

• Detection of failed nounif: elimnouniffalse removes clauses that contain the
hypothesis nounif((), ()).

25



7.4 Combining the simplifications

We group all simplifications, as follows:

• We define the simplification function simplify = elimtaut◦elimattx ◦elimdup◦
◦elimnouniffalse ◦ repeat(elimGVar ◦ swap ◦ unify ◦ elimvar ◦ simpeq). The
expression repeat(f) means that the application of function f is repeated until a
fixpoint is obtained, that is, f(R) = R. It is enough to repeat the simplification
only when elimvar has modified the set of clauses. Indeed, no new simplification
would be done in the other cases. The repetition never leads to an infinite loop,
because the number of variables decreases at each iteration.

• We let condense(R) apply simplify to R and then eliminate subsumed clauses.
We say that H1 → C1 subsumes H2 → C2 (and we write (H1 → C1) w
(H2 → C2)) if and only if there exists a substitution σ such that σC1 = C2 and
σH1 ⊆ H2 (as a multiset inclusion). If R contains clauses R and R′ such that
R subsumes R′, then R′ is removed. (In that case, R can do all derivations that
R′ can do.)

Finally, we define the algorithm saturate(R0). Starting from condense(R0), the
algorithm adds clauses inferred by resolution with the selection function sel and con-
denses the resulting clause set until a fixpoint is reached. When a fixpoint is reached,
saturate(R0) is the set of clauses R in the clause set such that sel(R) = ∅.

We have the following soundness result:

Theorem 4 If saturate(RP0
) terminates and its result contains no clause of the form

H → bad, then bad is not derivable from RP0
.

This result is proved in Appendix E.

8 Extension to scenarios with several stages

Many protocols can be broken into stages, and their security properties can be formu-
lated in terms of these stages. Typically, for instance, if a protocol discloses a session
key after the conclusion of a session, then the secrecy of the data exchanged during the
session may be compromised but not its authenticity. In some cases, the disclosure of
keys and other keying material is harmless and even useful at certain points in protocol
executions (e.g., [2]). In this section we extend our technique to protocols with several
successive stages. This extension consists in the following changes:

• The syntax of processes is supplemented with a stage prefix, t : P , where t is a
nonnegative integer. Intuitively, t represents a global clock, and the process t : P
is active only during stage t.

• The semantics of processes (and biprocesses) is extended by adding the rules of
Figure 4 to those of Figures 2 and 3. This new semantics is a refinement, since
P → Q in the simple semantics if and only if t : P →t t : Q in the refined
semantics. Conversely, if P ′ →t Q′ for staged processes, then P → Q in the
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(νa)t : P ≡ t : (νa)P
t : (P | Q) ≡ t : P | t : Q
t : t′ : P ≡ t′ : P if t < t′

P → Q ⇒ t : P →t t : Q (Red Stage)

P →t Q ⇒ P | R →t Q | R (Red Par)
P →t Q ⇒ (νa)P →t (νa)Q (Red Res)

P ′ ≡ P, P →t Q, Q ≡ Q′ ⇒ P ′ →t Q′ (Red ≡)

Figure 4: Semantics for stages

simple semantics, where P and Q are obtained from P ′ and Q′ by erasing all
stage prefixes.

• Instead of att′, msg′, and input′, the clause generation uses distinct predicates
att′t, msg′t, and input′t for each stage t used in the protocol. The clauses for the
protocol use the predicates indexed by t when translating the process P in t : P .
The clauses for the attacker are replicated for each att′t. In addition, new clauses
carry over the attacker’s knowledge from one stage to the next:

att′t(x, x′) → att′t+1(x, x′) (Rp)

As an optimization, when the protocol uses only plain processes for the initial
stages t ≤ i (that is, diff occurs only at later stages), we translate these processes
using the more efficient clause generation of [3], with predicates that keep track
of a single process, rather than the two variants of a biprocess.

• Our main theorems hold for staged biprocesses, with minor adaptations and extra
optimizations in algorithms. In particular, all definitions and theorems now use
→ = ∪t≥0 →t instead of →.

9 Applications

This section surveys some of the applications of our proof method. The total runtime of
all proof scripts for the experiments described below is 45 s on a Pentium M 1.8 GHz.
None of these applications could be handled by ProVerif without the extensions pre-
sented in this paper.

9.1 Weak secrets

A weak secret represents a secret value with low entropy, such as a human-memorizable
password. Protocols that rely on weak secrets are often subject to guessing attacks,
whereby an attacker guesses a weak secret, perhaps using a dictionary, and verifies its
guess. The guess verification may rely on interaction with protocol participants or on
computations on intercepted messages (e.g., [13, 35, 36]). With some care in protocol
design, however, those attacks can be prevented:
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• On-line guessing attacks can be mitigated by limiting the number of retries that
participants allow. An attacker that repeatedly attempts to guess the weak se-
cret should be eventually detected and stopped if it tries to verify its guesses by
interacting with other participants.

• Off-line guessing attacks can be prevented by making sure that, even if the at-
tacker (systematically) guesses the weak secret, it cannot verify whether its guess
is correct by computing on intercepted traffic.

Off-line guessing attacks can be explained and modelled in terms of a 2-stage scenario.
In stage 0, on-line attacks are possible, but the weak secret is otherwise unguessable.
In stage 1, the attacker obtains a possible value for the weak secret (intuitively, by
guessing it). The absence of off-line attacks is characterized by an equivalence: the
attacker cannot distinguish the weak secret used in stage 0 from an unrelated fresh
value.

In our calculus, we arrive at the following definition:

Definition 6 (Weak secrecy) Let P be a closed process with no stage prefix. We say
that P prevents off-line attacks against w when (νw)(0 : P | 1 : (νw′)c〈diff[w,w′]〉)
satisfies observational equivalence.

This definition is in line with the work of Cohen, Corin et al., Delaune and Jacquemard,
Drielsma et al., and Lowe [26–28, 30, 32, 41]. Lowe uses the model-checker FDR to
handle a bounded number of sessions, while Delaune and Jacquemard give a decision
procedure in this case. Corin et al. give a definition based on equivalence like ours, but
do not consider the first, active stage; they analyze only one session.

As a first example, assume that a principal attempts to prove knowledge of a shared
password w to a trusted server by sending a hash of this password encrypted under
the server’s public key. (For simplicity, the protocol does not aim to provide freshness
guarantees, so anyone may replay this proof.) Omitting the code for the server, a first
protocol may be written:

P = (νs)c〈pk(s)〉.c〈penc(h(w), pk(s))〉

The first output reveals the public key of the server; the second output communicates
the proof of knowledge of w. This protocol does not prevent off-line attacks against w.
ProVerif finds an attack that corresponds to the following adversary:

A = 0 : c(pk).c(e).

1 : c(w).if e = penc(h(w), pk) then Guessed〈〉

A corrected protocol uses non-deterministic encryption (see Example 3):

P = (νs, a)c〈pk(s)〉.c〈penc(h(w), pk(s), a)〉

ProVerif automatically produces a proof for this corrected protocol.
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As a second example, we consider a simplified version of EKE [13]:

PA = (νdA)c〈enc(bˆdA, w)〉

PB = c(x).(νdB)let k = dec(x,w)ˆdB in c〈enc(bˆdB , w), k〉

P = !PA | !PB

Here, two parties obtain a shared session key k = (bˆdA)ˆdB via a Diffie-Hellman
exchange, in which bˆdA and bˆdB are exchanged protected by a weak secret w. The
EKE protocol has several rounds of key confirmation; here, instead, we immediately
give the session key k to the attacker. Still, relying on the contextual property of equiva-
lence, we can define a context that performs these key confirmations. Since that context
does not use the weak secret, the resulting protocol prevents off-line attacks against w
as long as the original protocol does.

We have proved security properties of several versions of EKE: the public-key and
the Diffie-Hellman versions for EKE [13], and the version with hashed passwords and
the one with signatures for Augmented EKE [14]. Unlike the protocol displayed above,
our models include an unbounded number of possibly dishonest principals that run
parallel sessions.

For the analysis of such protocols, we define encryption under a weak secret by
the equational theory of Example 5. The use of this equational theory is important,
as it entails that the adversary cannot check whether a decryption is successful and
thereby check a guess. In contrast, a straightforward presentation with constructors and
destructors but without the equational theory (see Section 2.1) would not be adequate in
this respect: with that presentation, an attacker could verify a guess w′ of w by testing
whether the decryption of the first message of the protocol with w′ succeeds.

9.2 Authenticity

Abadi and Gordon [8] use equivalences for expressing authenticity properties, and treat
a variant of the Wide-Mouth-Frog protocol as an example. In this protocol, two partici-
pants A and B share secret keys kAS and kSB with a server S, respectively. Participant
A generates a key kAB , sends it encrypted to S, which forwards it reencrypted to B.
Then A sends the payload x to B encrypted under kAB . Finally, B forwards the pay-
load that it receives, possibly for further processing. Essentially, authenticity is defined
as an equivalence between the protocol and a specification. The specification is an ide-
alized variant of the protocol, obtained by modifying B so that, independently of what
it receives, it forwards A’s payload x.

For the one-session version [8, Section 3.2.2], the protocol and the specification
can be combined into the following biprocess P0:

PA = (νkAB)c〈enc(kAB , kAS)〉.c〈enc(x, kAB)〉

PS = c(y1).let y2 = dec(y1, kAS) in c〈enc(y2, kSB)〉

PB = c(y3).let y4 = dec(y3, kSB) in c(y5).let x′ = dec(y5, y4) in e〈diff[x, x′]〉

P0 = c(x).(νkAS)(νkSB)(PA | PS | PB)

with the rewrite rule dec(enc(x, y), y) → x for the destructor dec.
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The technique presented in this paper automatically proves that P0 satisfies obser-
vational equivalence, and hence establishes the desired authenticity property. Thus, it
eliminates the need for a laborious manual proof. The technique can also be used for
simplifying the proof of authenticity for the multi-session version.

Authenticity properties are sometimes formulated as correspondence assertions on
behaviors, rather than as equivalences. Previous work shows how to check those asser-
tions with ProVerif [16]. However, that previous work does not apply to equivalences.

9.3 Complete sessions in JFK

Finally, we show other ways in which automated proofs of equivalences can contribute
to protocol analyses, specifically studying JFK, a modern session-establishment proto-
col for IP security [9].

In recent work [4], we modelled JFK in the applied pi calculus. We used processes
for representing the reachable states of JFK, for any number of principals and sessions,
and stated security properties as equivalences. Although we relied on ProVerif for
reasoning about behaviors, our main proofs of equivalences were manual. Applying
the techniques of this paper, we can revise and largely automate those proofs. The
resulting proofs rely on equivalences on biprocesses, verified by ProVerif, composed
with standard pi calculus equivalences that do not depend on the signature for terms.

In particular, a core property of JFK is that, once a session completes, its session
key is (apparently) unrelated to the cryptographic material exchanged during the ses-
sion, and all those values can be replaced by distinct fresh names [4, Theorem 2]. This
property can be stated and proved in terms of a biprocess S that outputs either the actual
results of JFK computations (in fst(S)) or distinct fresh names (in snd(S)), in parallel
with the rest of the JFK system to account for any other sessions. The proof of this
property goes as follows. The JFK system is split into S ≈ C[S ′], where S′ is similar
to S but omits unimportant parts of JFK, collected in the evaluation context C[ ]. The
proof that S ≈ C[S′] is straightforward; it relies on pi calculus equivalences that elim-
inate communications on private channels introduced in the split. ProVerif shows that
S′ satisfies equivalence. Using the contextual property of equivalence, C[S ′] satisfies
equivalence, hence fst(S) ≈ snd(S).

10 Conclusion

In the last decade, there has been substantial research on proof methods for security
protocols. While many of those proof methods have focused on predicates on behav-
iors, others have addressed equivalences between systems (e.g., [1, 6–8, 23–25, 29, 33,
34, 38, 39, 46]). Much of this research is concerned with obtaining sound and com-
plete proof systems, often via sophisticated bisimulations, and eventually decision al-
gorithms for restricted cases. In our opinion, these are important goals, and the results
to date are significant.

In the present paper, we aim to contribute to this body of research with a different
approach. We do not emphasize the development of bisimulation techniques. Rather,
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we leverage behavior-oriented techniques and tools (ProVerif, in particular) for equiv-
alence proofs. We show how to derive equivalences by reasoning about behaviors—
specifically, by reasoning about behaviors of applied pi calculus biprocesses. We also
show how to translate those biprocesses to Horn clauses and how to reason about their
behaviors by resolution. The resulting proof method is sound, although that is not
simple to establish. We demonstrate the usefulness of the method through automated
analyses of interesting, infinite-state systems.
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Appendix

The Appendix contains proofs of the main results of this paper. Proof scripts for all
examples and applications, as well as the tool ProVerif, are available at http://
www.di.ens.fr/˜blanchet/obsequi/.

A Proof of Theorem 2

In this section, we prove the correctness of Algorithms 1, 2, and 3 given in Section 5.3.
We begin with preliminary lemmas on modelling equational theories.

A.1 Preliminary lemmas

Lemma 4 Let N be either a name or a variable. If Σ ` M = N and nfS,Σ({M}),
then M = N . For any set of terms M, if nfS,Σ(M), then nfS,Σ(M∪ {N}).

Proof We detail the proof for N = a.
If we had M 6= a, then either M contains a, so M does not satisfy nfS,Σ({M}), or

M does not contain a. In this latter case, since Σ is invariant by substitution of terms
for names, for all M ′, we have Σ ` a{M ′/a} = M{M ′/a} so Σ ` M ′ = M , then all
terms are equated by Σ, which contradicts the hypothesis.

Let M ′′ be any subterm of an element of M. We have nfS,Σ({M ′′}), so if Σ `
M ′′ = a, then M ′′ = a, by the previous property. Moreover, a is irreducible by S. So
we have nfS,Σ(M∪ {a}). 2

Lemma 5 Assume S = ∅ and Σ is any equational theory. Then Property S2 is true.

Proof We show the following property: If nfS,Σ(M), then for any term M there
exists M ′ such that Σ ` M ′ = M and nfS,Σ(M∪ {M ′}).

The proof is by induction on M .

• Cases M = a and M = x: Let M ′ = M ; by Lemma 4, nfS,Σ(M∪ {M ′}).

• Case M = f(N1, . . . , Nn): By induction hypothesis, there exist N ′
1, . . . , N

′
n

such that Σ ` Ni = N ′
i and nfS,Σ(M∪ {N ′

1, . . . , N
′
n}). (For Ni, we apply the

induction hypothesis with M∪ {N ′
1, . . . , N

′
i−1} instead of M.)

If there exists a subterm M ′ of M ∪ {N ′
1, . . . , N

′
n} such that Σ ` f(N1, . . . ,

Nn) = M ′, then we have nfS,Σ(M∪ {M ′}).
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Otherwise, let M ′ = f(N ′
1, . . . , N

′
n). We have Σ ` M ′ = f(N1, . . . , Nn),

and nfS,Σ(M ∪ {M ′}) since the subterms of M ∪ {M ′} are the subterms of
M∪ {N ′

1, . . . , N
′
n} and the term M ′, nfS,Σ(M∪ {N ′

1, . . . , N
′
n}) and the new

subterm M ′ is different from any subterm of M ∪ {N ′
1, . . . , N

′
n} modulo the

equational theory of Σ. 2

A.2 Convergent theories

Lemma 6 The signature Σ′ built by Algorithm 1 models Σ.

Proof Properties S1 and S3 are obvious.
Let us prove Property S2. Assume that nfS,Σ(M). Let M ′ = M↓. Then Σ `

M = M ′ and M ′ is irreducible by S. Let N1 and N2 be two subterms of M∪ {M ′}
such that Σ ` N1 = N2, that is, N1↓ = N2↓. Moreover, N1 and N2 are in normal
form relatively to S, so N1 = N2. Hence nfS,Σ(M∪ {M ′}).

Finally, we prove Property S4. When M = f(M1, . . . ,Mn), we let M↓s =
f(M1↓, . . . ,Mn↓) be the term obtained by reducing to normal form the strict subterms
of M . We first note a few elementary properties of the algorithm:

P1. If N → N ′ is in S, then there is N1 → N ′
1 in E such that T [σN1] = N↓s

and T [σN ′
1] = N ′↓ for some σ and T . (This is true at the beginning of an

execution of the algorithm, and remains true during the execution, since a rule
N1 → N ′

1 is removed from E only when there is another rule N2 → N ′
2 such

that N1 = T [σN2] and N ′
1 = T [σN ′

2] for some σ and T .)

P2. If N is reducible by a rule in E, then it is also reducible by a rule in S. (This
is true at the beginning of an execution of the algorithm and remains true during
the execution.)

P3. If N → N ′ is in E, then N is not a variable, and all variables of N ′ occur in N .
(This is true at the beginning of an execution of the algorithm and remains true
during the execution.)

P4. At the end of the algorithm, if N1 → N ′
1 and N2 → N ′

2 in E are such that N ′
1 =

T [N ′′
1 ], N ′′

1 is not a variable, and σu is the most general unifier of N ′′
1 and N2,

then there exist N3 → N ′
3 in E, T ′, and σ such that T ′[σN3] = (σuN1)↓

s and
T ′[σN ′

3] = σuT [σuN ′
2]↓. (This simply expresses that the fixpoint is reached:

the rule (σuN1)↓
s → σuT [σuN ′

2]↓ has been added to E.)

We show the following two properties, P5(n) for n > 0 and P6(n) for n ≥ 0:

P5(n). If the longest reduction of M by S is of length n and M = M↓s, then there
exist N → N ′ in E and σ such that M = σN and M↓ = σN ′.

P6(n). If the longest reduction of σN ′
1 by S is of length n, M = σN1 →∗

S σN ′
1,

M = M↓s, and N1 → N ′
1 is in E, then there exist N2 → N ′

2 in E and σ′ such
that M = σ′N2 →∗

S σ′N ′
2 = M↓.

The proof is by induction on n.
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• Proof of P5(n) (n > 0).

Since M = M↓s, the strict subterms of M are irreducible, so the first application
of a rewrite rule in any reduction of M much touch the root function symbol of
M . Let N → N ′ be this rewrite rule. There exists σ1 such that M = σ1N . Since
N → N ′ is in S, by P1, there is N1 → N ′

1 in E such that T [σ2N1] = N↓s

and T [σ2N
′
1] = N ′↓ for some σ2 and T . Since the strict subterms of σ1N

are irreducible by S, the strict subterms of N are also irreducible by S, hence
N↓s = N . Furthermore, T = [ ], since otherwise a strict subterm of N would
be reducible by N1 → N ′

1 in E, so using P2, it would also be reducible by S.
Hence σ1σ2N1 = σ1N = M and σ1σ2N

′
1 = σ1(N

′↓). Let σ = σ1σ2. Then
M = σN1 →+

S σN ′
1.

By P6(n′) where n′ is the length of the longest reduction of σN ′
1 (n′ < n), there

exist N2 → N ′
2 in E and σ′ such that M = σ′N2 →∗

S σ′N ′
2 = M↓, which is

P5(n).

• Proof of P6(n), n = 0, σN ′
1 is irreducible by S. Then σN ′

1 = M↓ and we have
P6(0) by taking σ′ = σ, N2 = N1, and N ′

2 = N ′
1.

• Proof of P6(n), n > 0, σN ′
1 is reducible by S.

Let us consider a minimal subterm of σN ′
1 which is reducible by S, that is, a

subterm of σN ′
1 reducible by S but such that all its strict subterms are irreducible

by S. Such a term is of the form σN ′
3, where N ′

3 is a non-variable subterm of N ′
1.

(Indeed, all terms σx and their subterms are irreducible by S, since they are strict
subterms of M and M = M↓s.)

The longest reduction of σN ′
3 is at most as long as the one of σN ′

1, so by P5, there
exist N4 → N ′

4 in E and σ′′ such that σN ′
3 = σ′′N4 and (σN ′

3)↓ = σ′′N ′
4. Thus

we have M = σN1 →∗
S σN ′

1 = σT [σN ′
3] = σT [σ′′N4] →+

S σT [σ′′N ′
4] =

σT [(σN ′
3)↓].

The rewrite rules N1 → N ′
1 and N4 → N ′

4 have a critical pair, that is, N ′
1 =

T [N ′
3], N ′

3 is not a variable, and N ′
3 and N4 unify, with most general unifier σu.

By P4, there is N5 → N ′
5 in E such that T ′[σ5N5] = (σuN1)↓

s and T ′[σ5N
′
5] =

σuT [σuN ′
4]↓ for some T ′ and σ5. Moreover, σuN1 is more general than σN1, so

the strict subterms of σuN1 are irreducible, since the strict subterms of σN1 are.
So (σuN1)↓

s = σuN1. Furthermore T ′ = [ ], since otherwise a strict subterm
of σuN1 would be reducible by E, so using P2, it would also be reducible by S.
Hence σ5N5 = σuN1 and σ5N

′
5 = σuT [σuN ′

4]↓.

Then M = σ1N5 →∗
S σ1N

′
5 for some σ1. Moreover, σN ′

1 = σT [σ′′N4] →
+
S

σT [σ′′N ′
4] →

∗
S σ1N

′
5, so the longest reduction of σ1N

′
5 is strictly shorter than

the longest reduction of σN ′
1, hence by P6 applied to σ1N

′
5, there exist σ′ and

N2 → N ′
2 in E such that M = σ′N2 →∗

S σ′N ′
2 = M↓. This yields P6 for σN ′

1.

We now turn to the proof of Property S4 itself. Assume Σ ` f(M1, . . . ,Mn) = M
and nfS,Σ({M,M1, . . . ,Mn}). We show that there exist f(N1, . . . , Nn) → N in
defΣ′(f) and σ such that M = σN and Mi = σNi. Since M is irreducible, we have
M = f(M1, . . . ,Mn)↓.
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• If f(M1, . . . ,Mn) is irreducible by S, then f(M1, . . . ,Mn) = M and we have
the result using the rule f(x1, . . . , xn) → f(x1, . . . , xn) always in defΣ′(f).

• Otherwise, we have f(M1, . . . ,Mn)↓s = f(M1, . . . ,Mn) since Mi is irre-
ducible for all i ∈ {1, . . . , n}. Property P5 for the term f(M1, . . . ,Mn) yields
the desired result, since every rule f(N1, . . . , Nn) → N ′ of E is in defΣ′(f). 2

We say that S is a convergent subterm system when S is convergent and all its
rewrite rules are of the form M → N where N is either a strict subterm of M or a
closed term in normal form with respect to S [5, 12].

Lemma 7 When S is a convergent subterm rewriting system, Algorithm 1 terminates
and the final value of E is normalize(S).

Proof Let S be a convergent subterm system, with Σ the associated equational the-
ory. Let E1 be obtained by replacing each rule f(M1, . . . ,Mn) → N of S with
f(M1↓, . . . ,Mn↓) → N↓ and removing rules of the form M → M . Let E2 =
normalize(S). We first show:

P1. if M 6= N , Σ ` M = N , and N and the strict subterms of M are in normal form,
then there exist M1 → N1 in E2 and σ such that M = σM1 and N = σN1.

Since Σ ` M = N , we have M↓ = N↓. The term N is in normal form, so M↓ = N ,
so M →∗

S N . Since M 6= N , M →S M ′ →∗
S N . Since the strict subterms of M are

in normal form, there are a rewrite rule M1 → M ′
1 of S and a substitution σ such that

M = σM1 and M ′ = σM ′
1. If M ′

1 is a strict subterm of M1, M ′ is a strict subterm
of M , so M ′ is in normal form, hence M ′ = N . If M ′

1 is a closed term in normal form,
M ′ = M ′

1 is in normal form, so we also have M ′ = N .
Moreover, M ′

1 and the strict subterms of M1 are in normal form since M ′ and the
strict subterms of M are. So the rewrite rule M1 → N1 is preserved by the transfor-
mation of S into E1, so M1 → N1 is in E1. Finally, if M1 → N1 is removed when
transforming E1 into E2, there are another rule M ′

1 → N ′
1 in E2 and a substitution σ′

such that M1 = σ′M ′
1 and N1 = σ′N ′

1, so Property P1 holds in any case.
Let M0 → N0 be a rewrite rule added by Algorithm 1. We show that E2 =

normalize(E2 ∪ {M0 → N0}). Let E3 be obtained by replacing each rule f(M1,
. . . ,Mn) → N of E2 ∪ {M0 → N0} with f(M1↓, . . . ,Mn↓) → N↓ and removing
rules of the form M → M . Since E2 has already been normalized, when we transform
E2 ∪ {M0 → N0} into E3, only M0 → N0 is transformed, into a rule M → N . If
M = N , the rule M → N is removed, so we immediately have E2 = normalize(E2∪
{M0 → N0}). Otherwise, by Property P1, there exist M1 → N1 in E2 (so in E3) and σ
such that M = σM1 and N = σN1. Hence M0 → N0 is removed by the last step of
normalize, so E2 = normalize(E2 ∪ {M0 → N0}). We conclude that the fixpoint is
reached before iterating, and it is E2. 2

A.3 Linear theories

Lemma 8 The signature Σ′ built by Algorithm 2 models Σ.
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Proof Property S1 is obvious. Property S2 follows from Lemma 5. Property S3
follows from the invariant that, if M → M ′ is in E, then Σ ` M = M ′. Next, we
prove Property S4. We first note a few elementary properties of the algorithm:

P1. If N = N ′ or N ′ = N is an equation of Σ, then there is N1 → N ′
1 in E such that

T [σN1] = N and T [σN ′
1] = N ′ for some σ and T . (This is true at the beginning

of an execution of the algorithm, and remains true during the execution, since a
rule N1 → N ′

1 is removed from E only when there is another rule N2 → N ′
2 in

E such that N1 = T [σN2] and N ′
1 = T [σN ′

2] for some σ and T .)

P2. At the end of the algorithm, if N1 → N ′
1 and N2 → N ′

2 in E are such that N ′
1 =

T [N ′′
1 ], N ′′

1 and N2 are not variables, and σu is the most general unifier of N ′′
1

and N2, then there exist N3 → N ′
3 in E, T ′, and σ such that T ′[σN3] = σuN1

and T ′[σN ′
3] = σuT [σuN ′

2]. (This simply expresses that the fixpoint is reached:
the rule (σuN1) → σuT [σuN ′

2] has been added to E.)

Similarly, if N1 → N ′
1 and N2 → N ′

2 in E are such that N2 = T [N ′′
2 ], N ′

1

and N ′′
2 are not variables, and σu is the most general unifier of N ′

1 and N ′′
2 , then

there exist N3 → N ′
3 in E, T ′, and σ such that T ′[σN3] = σuT [σuN1] and

T ′[σN ′
3] = σuN ′

2.

Let us now prove a few more properties:

P3. For all M,M ′, if Σ ` M = M ′ then M →∗
E M ′.

Assume that Σ ` M = M ′ comes from one equation of Σ. Then there are
N = N ′ in Σ, T , and σ such that M = T [σN ] and M ′ = T [σN ′]. Hence,
by P1, there are N1 → N ′

1 in E, T ′, and σ′ such that N = T ′[σ′N1] and
N ′ = T ′[σ′N ′

1]. So M = T [(σT ′)[σσ′N1]] →E T [(σT ′)[σσ′N ′
1]] = M ′. The

property stated above follows immediately.

P4. If M1 →E M2 →E M3 using two rules M → N and M ′ → N ′ of E such that
neither N nor M ′ are variables, M1 = T1[σ1M ], M2 = T1[σ1N ] = T2[σ2M

′],
and M3 = T2[σ2N

′] for some contexts T1 and T2 and substitutions σ1 and σ2,
then

• either M1 →E M3 in a single step;

• or the rules commute: M1 →E M ′
2 →E M3 where M1 →E M ′

2 comes
from M ′ → N ′ and M ′

2 →E M3 comes from M → N .

We prove the property by case analysis on T1 and T2:

(1) The occurrences of the holes of T1 and T2 are not nested: there exists T ′′

such that T1 = T ′′[[ ], σ2M
′] and T2 = T ′′[σ1N, [ ]]. So M1 = T ′′[σ1M,σ2M

′],
M2 = T ′′[σ1N,σ2M

′], and M3 = T ′′[σ1N,σ2N
′]. Then the rules commute:

M1 = T ′′[σ1M,σ2M
′] →E M ′

2 = T ′′[σ1M,σ2N
′] →E M3 = T ′′[σ1N,

σ2N
′].

(2) The occurrence of the hole of T1 is inside the one of T2: T1 = T2[T
′]. We

distinguish two subcases:
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(2a) T ′ is an instance of M ′: T ′ = σ3M
′. So we have M1 = T2[(σ3M

′)[σ1M ]],
M2 = T2[(σ3M

′)[σ1N ]], and M3 = T2[(σ3N
′)[σ1N ]]. The linearity of N ′

guarantees that σ3N
′ contains at most one hole, since σ3M

′ contains one hole.

If σ3N
′ contains no hole (that is, the variable x of M ′ such that σ3x con-

tains a hole does not occur in N ′), then M1 = T2[(σ3M
′)[σ1M ]] →E M3 =

T2[(σ3N
′)] by M ′ →E N ′.

If σ3N
′ contains exactly one hole, the rules commute: M1 = T2[(σ3M

′)[σ1M ]]
→E M ′

2 = T2[(σ3N
′)[σ1M ]] →E M3 = T2[(σ3N

′)[σ1N ]].

(2b) T ′ is not an instance of M ′. Since T ′[σ1N ] = σ2M
′ and M ′ is linear, the

hole of T ′ occurs at a non-variable position in M ′, so N and M ′ form a critical
pair and, by Property P2, E contains a rule that corresponds to the application of
both rewrite rules M → N and M ′ → N ′.

(3) The occurrence of the hole of T2 is inside the one of T1: T2 = T1[T
′]. The

proof is similar to the one for case (2).

Let Σ ` f(M1, . . . ,Mn) = M with nfS,Σ({M,M1, . . . ,Mn}). We show that there
exist f(N1, . . . , Nn) → N in defΣ′(f) and σ such that M = σN and Mi = σNi for
all i ∈ {1, . . . , n}.

Since Σ ` f(M1, . . . ,Mn) = M , we have f(M1, . . . ,Mn) →∗
E M by P3. Con-

sider a shortest sequence such that f(M1, . . . ,Mn) →∗
E M .

• In this sequence, consecutive rewrite rules always commute, because otherwise
we would obtain a shorter sequence by P4.

• If this sequence uses a rule x → M ′ in E, consider the last such rule. It com-
mutes with the rule that immediately follows. So we obtain a sequence in which
x → M ′ is applied last. This is impossible since nfS,Σ({M}). From now on,
we consider a sequence that does not use any rewrite rule of the form x → M ′.

• If this sequence uses no rewrite rule applied with empty context, then M =
f(M ′

1, . . . ,M
′
n) and Mi →∗

E M ′
i , so Σ ` Mi = M ′

i . Since nfS,Σ({M1, . . . ,
Mn,M}), Mi = M ′

i , so M = f(M1, . . . ,Mn). Then f(x1, . . . , xn) →
f(x1, . . . , xn) in defΣ′(f) and σxi = Mi yields the desired result.

• If this sequence uses at least one rewrite rule applied with empty context, let
f(N1, . . . , Nn) → N be the first such rule.

If the sequence uses a rule M ′ → x in E before f(N1, . . . , Nn) → N , then this
rule is applied with non-empty context (because otherwise f(N1, . . . , Nn) → N
would not be the first rule with empty context). Consider the first such rule.
This rule commutes with the rule just before it. Moreover, after commutation,
M ′ → x is still applied with non-empty context. (The only case that would
make the context disappear is when the rewrite rule before was y → M ′′, but
this case cannot occur as shown above.) So we obtain a sequence in which
M ′ → x is applied first, and with non-empty context. This is impossible since
nfS,Σ({M1, . . . ,Mn}). So we consider a sequence not using rules of the form
M ′ → x before f(N1, . . . , Nn) → N .
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The rule f(N1, . . . , Nn) → N commutes with the rule just before it. The rule
f(N1, . . . , Nn) → N is still applied with an empty context after commuta-
tion. So we can obtain a sequence in which f(N1, . . . , Nn) → N is applied
first. All rewrite rules after the first one are applied with a context that is an
instance of N (because otherwise N is not a variable and the first rule applied
with a context that is not an instance of N can be commuted with other rewrite
rules so that it occurs just after f(N1, . . . , Nn) → N , so it has a critical pair
with f(N1, . . . , Nn) → N , so we could obtain a shorter sequence by P2). So
M = σ′N for some σ′. Furthermore f(M1, . . . ,Mn) = f(σN1, . . . , σNn) →E

σN →∗
E M = σ′N for some σ. Then for all x ∈ fv(N), σx →∗

E σ′x, so for all
x ∈ fv(N), Σ ` σx = σ′x. Moreover, nfS,Σ(M1, . . . ,Mn,M), so σx = σ′x,
and M = σN , which yields the result. 2

A.4 Union of disjoint equational theories

Let Σ be a signature such that its set of function symbols can be partitioned into F1∪F2

and its set of equations can be partitioned into E ′
1∪E′

2, where E′
1 contains only function

symbols in F1 and E′
2 in F2. Let Σ1 be the signature obtained by considering only the

equations E′
1, and Σ2 only the equations E′

2.

Lemma 9 If Σ ` f(M1, . . . ,Mn) = M , nf∅,Σ({M,M1, . . . ,Mn}), and f ∈ Fi

(i = 1 or 2) then Σi ` f(M1, . . . ,Mn) = M .

Proof To prove this result, we use the decision algorithm for the word problem in a
union of disjoint equational theories, by Baader and Tinelli [11, Section 4]. We use the
notations of [11], and we refer the reader to that paper for details.

Assume i = 1. (The case i = 2 is symmetric.) Let us start with S0 = {x0 6≡
y0, x0 ≡ f(M1, . . . ,Mn), y0 ≡ M}. Since Σ ` f(M1, . . . ,Mn) = M , by complete-
ness of their algorithm, their algorithm terminates with S = {v 6≡ v} ∪ T .

Let S be a set of equations and disequations, such that all equations of S are of the
form v ≡ M , if v ≡ M and v ≡ N are in S then M = N , and ≺ is acyclic on S. Let
us define a substitution σ by σv = M when (v ≡ M) ∈ S. Since ≺ is acyclic on S,
we can define σ∗ as the substitution obtained by composing σ with itself as many times
as needed so that terms do not change any more. Let recS(v) = σ∗v.

If we apply the rules of the algorithm according to a suitable strategy (made explicit
below), we can show that the algorithm preserves the following invariant:

P1. There is no equation v ≡ M ′ in Sj such that (v ≡ M ′) ≺ (x0 ≡ M ′′).

P2. If j > 0, then for all v 6= x0 such that v occurs in Sj−1 and Sj , we have
recSj−1

(v) = recSj
(v).

P3. For all v 6= x0 such that v occurs in Sj , recSj
(v) is a subterm of M1, . . . ,Mn,M

(so if v, v′ 6= x0 occur in Sj and Σ ` recSj
(v) = recSj

(v′), then recSj
(v) =

recSj
(v′), since nf∅,Σ({M,M1, . . . ,Mn})).

P4. If j > 0 and x0 ≡ M ′′ ∈ Sj , then Σ1 ` recSj−1
(x0) = recSj

(x0).
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P5. When x0 ≡ M ′′ ∈ Sj , M ′′ is a non-variable 1-term.

P6. If j > 0, u 6≡ u′ ∈ Sj−1, and v 6≡ v′ ∈ Sj , then Σ1 ` recSj−1
(u) = recSj

(v)
and Σ1 ` recSj−1

(u′) = recSj
(v′).

During the first stage (construction of the abstraction system), these properties are ob-
vious. We even have recSj−1

(v) = recSj
(v) for all v that occur in Sj−1, and the

disequation x0 6≡ y0 is not changed.
During the second stage (application of Coll1, Coll2, Ident, Simpl), we do not

apply Simpl since the authors remark that it is not necessary. We show that if Sj−1 is
transformed into Sj by Coll1, Coll2, or Ident, and Sj−1 satisfies the invariant, then so
does Sj .

• For Coll1 and Coll2 with x 6= x0, Σi ` y = t, so Σ ` recSj−1
(x) = recSj−1

(y),
so by P3, recSj−1

(x) = recSj−1
(y), so y = t. Then for all v that occur in Sj ,

recSj−1
(v) = recSj

(v), so we have P2 and P4 for Sj . P3 holds for Sj since
P2 holds for Sj and P3 holds for Sj−1. We have recSj−1

(x) = recSj−1
(y) =

recSj
(y), so P6 follows. P1 and P5 are easy to show.

• For Coll1 with x = x0, Σ1 ` y = t, and T{r/x0} = T since x0 does not occur
in the right-hand side of equalities by P1. So for all v that occur in Sj (that is, all
v that occur in Sj−1 except x0), recSj−1

(v) = recSj
(v), so we have P2 for Sj ;

P3 follows. P4 and P5 hold since Sj contains no equation of the form x0 ≡ M ′′.
Since Σ ` y = t, we have Σ1 ` recSj−1

(x0) = recSj−1
(y) = recSj

(y), so P6
follows. P1 is easy to show.

• For Coll2 with x = x0, Σ1 ` y = t, and T is replaced with T{y/x0}, which
modifies only the disequation, since x0 does not occur in the right-hand side of
equalities by P1. We conclude as in the previous case.

• For Ident, we never apply Ident with y = x0; when Ident would be applicable
with y = x0, we apply instead Ident with x = x0 (which is possible by P1).

If we apply Ident with x, y 6= x0, then Σi ` s = t, so Σ ` recSj−1
(x) =

recSj−1
(y), so by P3, recSj−1

(x) = recSj−1
(y), so s = t. Then, for all v that

occur in Sj , recSj−1
(v) = recSj

(v), so we have P2 and P4; P3 follows. We
have recSj−1

(x) = recSj−1
(y) = recSj

(y), so P6 follows. P1 and P5 are easy to
show.

If we apply Ident with x = x0, y 6= x0, then Σ1 ` s = t. x0 does not occur
in the right-hand side of equalities by P1. So replacing x0 with y in T changes
only the disequation. Then for all v that occur in Sj , recSj−1

(v) = recSj
(v), so

we have P2 and P4; P3 follows. Since Σ1 ` s = t, we have Σ ` recSj−1
(x0) =

recSj−1
(y) = recSj

(y), so P6 follows. P1 and P5 are easy to show.

Since, in the end, S contains v 6≡ v, by P6, we have Σ1 ` recS0
(x0) = recS(v) and

Σ1 ` recS0
(y0) = recS(v) which implies Σ1 ` f(M1, . . . ,Mn) = M . 2

This result can be used to prove the correctness of Algorithm 3.
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Lemma 10 The signature Σ′ built by Algorithm 3 models Σ.

Proof The set of function symbols of Σ can be partitioned into F1 ∪F2, where Econv

contains only function symbols in F1 and Elin in F2. Let Σ1 be the signature obtained
by considering only equations Econv, and Σ2 only Elin.

Because of the particular way in which we prove that subsets Ei are convergent, we
have that their union Econv is also convergent, so we can apply Algorithm 1 to Econv.
(When we prove termination of each Ei via a lexicographic path ordering, we order the
function symbols of Ei. We order the function symbols of Econv by the union of these
orderings. Then the corresponding lexicographic path ordering shows the termination
of Econv. The confluence of Econv follows from the confluence of every Ei by the
critical-pair theorem.)

Properties S1 and S3 are obvious. We prove Property S2 by induction on M :

• Cases M = a and M = x: Let M ′ = M ; by Lemma 4, nfS,Σ(M∪ {M}).

• Case M = f(M1, . . . ,Mn): By induction hypothesis, there exist M ′
1, . . . ,M

′
n

such that Σ ` Mi = M ′
i and nfS,Σ(M ∪ {M ′

1, . . . ,M
′
n}). (For Mi, we apply

the induction hypothesis with M∪ {M ′
1, . . . ,M

′
i−1} instead of M.)

Case 1: there exists a subterm M ′ of M∪ {M ′
1, . . . ,M

′
n} such that Σ ` f(M1,

. . . ,Mn) = M ′. Then M ′ is irreducible by S and nfS,Σ(M ∪ {M ′}), so we
have the result.

Case 2: there exists no subterm M ′′ of M ∪ {M ′
1, . . . ,M

′
n} such that Σ `

f(M1, . . . ,Mn) = M ′′.

Case 2.1: Assume f ∈ F2. Let M ′ = f(M ′
1, . . . ,M

′
n). We have Σ ` f(M1, . . . ,

Mn) = M ′. Moreover, M ′ is irreducible by S since M ′
1, . . . ,M

′
n are, f ∈ F2,

and no rewrite rule of S contains a function symbol in F2 or a variable in the
left-hand side. Then nfS,Σ(M∪{M ′}) since the subterms of M∪{M ′} are the
subterms of M∪{M ′

1, . . . ,M
′
n} and the term M ′, nfS,Σ(M∪{M ′

1, . . . ,M
′
n}),

and the new subterm M ′ is different from any subterms of M∪ {M ′
1, . . . ,M

′
n}

modulo the equational theory of Σ.

Case 2.2: Assume f ∈ F1. Let M ′ = f(M ′
1, . . . ,M

′
n)↓. We have Σ `

f(M1, . . . ,Mn) = M ′. Moreover, M ′ is irreducible by S by definition. If
nfS,Σ(M ∪ {M ′}) was wrong, there would exist N and N ′ subterms of M ∪
{M ′} such that Σ ` N = N ′ and N 6= N ′. Let us choose such terms N and N ′

such that the pair (max(size(N), size(N ′)),min(size(N), size(N ′))) ordered
lexicographically is minimal. When size(N) < size(N ′), we swap N and N ′,
so that we always have size(N) ≥ size(N ′). Let N = f ′(N1, . . . , Nn′). We
have nfS,Σ(N1, . . . , Nn′ , N ′). (If nfS,Σ(N1, . . . , Nn′ , N ′) was not true, consid-
ering subterms of N1, . . . , Nn′ , N ′ that falsify nfS,Σ(N1, . . . , Nn′ , N ′) would
yield a smaller counterexample.)

Notice that nfS,Σ(N1, . . . , Nn′ , N ′) implies nf∅,Σ(N1, . . . , Nn′ , N ′), so we can
apply Lemma 9.

If f ′ ∈ F1, then Σ1 ` f ′(N1, . . . , Nn′) = N ′ by Lemma 9. Hence f ′(N1, . . . ,
Nn′)↓ = N ′↓. The terms N ′ and f ′(N1, . . . , Nn′) are subterms of M∪ {M ′},
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so they are irreducible by S, so f ′(N1, . . . , Nn′) = N ′. Hence, we have a
contradiction.

If f ′ ∈ F2, then Σ2 ` f ′(N1, . . . , Nn′) = N ′ by Lemma 9. Since the re-
duction of f(M ′

1, . . . ,M
′
n) into M ′ modifies only the top-level context of M ′

within F1, all subterms of M ∪ {M ′} with root symbol in F2 are also sub-
terms of M∪ {M ′

1, . . . ,M
′
n}, so they satisfy nfS,Σ. So the root symbol of N ′

is in F1. Let N ′ = f ′′(N ′
1, . . . , N

′
n′′), f ′′ ∈ F1. If nfS,Σ(N ′

1, . . . , N
′
n′′ , N),

we can apply the case f ′ ∈ F1 above to Σ ` f ′′(N ′
1, . . . , N

′
n′′) = N . Oth-

erwise, the counterexample to nfS,Σ(N ′
1, . . . , N

′
n′′ , N) is not smaller than Σ `

N = N ′ since it is minimal, and size(N) ≥ size(N ′), so the counterexample to
nfS,Σ(N ′

1, . . . , N
′
n′′ , N) consists of two subterms of N ; this situation is impos-

sible since N = f ′(N1, . . . , Nn′) is a subterm of M∪{M ′
1, . . . ,M

′
n}, so all its

subterms satisfy nfS,Σ.

Hence we have nfS,Σ(M∪ {M ′}).

Finally, we prove Property S4. Let Σ ` f(M1, . . . ,Mn) = M with nfS,Σ({M,M1,
. . . ,Mn}). If f ∈ Fi (i = 1, 2), then Σi ` f(M1, . . . ,Mn) = M by Lemma 9 (since
nfS,Σ(M′) implies nf∅,Σ(M′)). If i = 1, we conclude by Property S4 for Algorithm 1.
If i = 2, we conclude by Property S4 for Algorithm 2. 2

B Proofs of Lemmas 1 and 2

From this point on, we assume that Σ′ models Σ. We say that a term or a term evalua-
tion is plain when it does not contain diff.

B.1 Preliminary lemmas

The following lemma shows the soundness of D′ ⇓′ (M ′, σ′) with respect to D ⇓Σ′ M .

Lemma 11 Let σ be a closed substitution.
Let D be a plain term evaluation. If σD ⇓Σ′ M , then there exist M ′, σ1, and σ′

1

such that D ⇓′ (M ′, σ1), M = σ′
1M

′, and σ = σ′
1σ1 except on fresh variables

introduced in the computation of D ⇓′ (M ′, σ1).
Let D1, . . . , Dn be plain term evaluations. If for all i ∈ {1, . . . , n}, σDi ⇓Σ′ Mi,

then there exist M ′
1, . . . ,M

′
n, σ1, and σ′

1 such that (D1, . . . , Dn) ⇓′ ((M ′
1, . . . ,M

′
n),

σ1), Mi = σ′
1M

′
i for all i ∈ {1, . . . , n}, and σ = σ′

1σ1 except on fresh variables
introduced in the computation of (D1, . . . , Dn) ⇓′ ((M ′

1, . . . ,M
′
n), σ1).

Proof The proof is by mutual induction following the definition of ⇓′.

• Case D = M ′: Take σ1 = ∅, σ′
1 = σ. Since M = σM ′, we have the result.

• Case D = eval h(D1, . . . , Dn): Since eval h(σD1, . . . , σDn)⇓Σ′ M , there
exist h(N1, . . . , Nn) → N in defΣ′(h) and σm such that σDi ⇓Σ′ σmNi and
M = σmN .
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By induction hypothesis, there exist M ′
i , σ1, and σ′

1 such that (D1, . . . , Dn) ⇓′

((M ′
1, . . . ,M

′
n), σ1), σmNi = σ′

1M
′
i for all i ∈ {1, . . . , n}, and σ = σ′

1σ1

except on fresh variables introduced in the computation of (D1, . . . , Dn) ⇓′

((M ′
1, . . . ,M

′
n), σ1).

Let σu be the most general unifier of M ′
i and Ni for i ∈ {1, . . . , n}. (The

substitution σu exists since σmNi = σ′
1M

′
i .) Then eval h(D1, . . . , Dn) ⇓′

(σuN,σuσ1). The substitution that maps variables of Ni, N as σm and other
variables as σ′

1 is a unifier of M ′
i and Ni, so there exists σ′′

1 such that σm = σ′′
1σu

on variables of Ni, N , and σ′
1 = σ′′

1σu on other variables.

Then σ′′
1σuN = σmN = M and σ′′

1σuσ1 = σ′
1σ1 = σ except on fresh vari-

ables introduced in the computation of (D1, . . . , Dn) ⇓′ ((M ′
1, . . . ,M

′
n), σ1)

and variables of N1, . . . , Nn, N , that is, fresh variables introduced in the com-
putation of D ⇓′ (σuN,σuσ1).

• Case (D1, . . . , Dn): We have, for all i in {1, . . . , n}, σDi ⇓Σ′ Mi.

By induction hypothesis, there exist M ′
i , σ1, and σ′

1 such that (D1, . . . , Dn−1) ⇓
′

((M ′
1, . . . ,M

′
n−1), σ1), Mi = σ′

1M
′
i for all i ∈ {1, . . . , n − 1}, and σ = σ′

1σ1

except on fresh variables introduced in the computation of (D1, . . . , Dn−1) ⇓′

((M ′
1, . . . ,M

′
n−1), σ1).

Then σDn = σ′
1σ1Dn, so σ′

1(σ1Dn)⇓Σ′ Mn. So by induction hypothesis, there
exist M ′

n, σ2, and σ′
2 such that σ1Dn ⇓′ (M ′

n, σ2), Mn = σ′
2M

′
n, and σ′

1 = σ′
2σ2

except on fresh variables introduced in the computation of σ1Dn ⇓′ (M ′
n, σ2).

Hence (D1, . . . , Dn) ⇓′ ((σ2M
′
1, . . . , σ2M

′
n−1,M

′
n), σ2σ1), Mi = σ′

1M
′
i =

σ′
2(σ2M

′
i) for all i ∈ {1, . . . , n − 1}, Mn = σ′

2M
′
n, and σ = σ′

1σ1 = σ′
2σ2σ1

except on fresh variables introduced in the computation of (D1, . . . , Dn) ⇓′

((σ2M
′
1, . . . , σ2M

′
n−1,M

′
n), σ2σ1). 2

Lemma 12 Let σ be a closed substitution and M a plain term. If Σ ` M ′ = σM and
nfS,Σ({M ′} ∪ {σx | x ∈ fv(M)}) then σaddeval(M)⇓Σ′ M ′.

Proof The proof is by induction on M .

• Case M = x: We have Σ ` σx = σM = M ′. Since nfS,Σ({σx,M ′}),
σx = M ′. Moreover, σaddeval(M) = σx⇓Σ′ σx = M ′.

• Case M = a: Since Σ ` M ′ = σM and nfS,Σ({M ′}), we have M ′ = a by
Lemma 4, so σaddeval(M) = a⇓Σ′ a = M ′.

• Case M = f(M1, . . . ,Mn): We have Σ ` M ′ = σM = f(σM1, . . . , σMn)
and nfS,Σ({M ′}∪{σx | x ∈ fv(M)}). By Property S2, there exist M ′

1, . . . ,M
′
n

such that Σ ` σMi = M ′
i and nfS,Σ({M ′,M ′

1, . . . ,M
′
n}∪{σx | x ∈ fv(M)}).

By Property S4, there exist f(N1, . . . , Nn) → N in defΣ′(f) and σ′ such that
M ′ = σ′N and σ′Ni = M ′

i for all i ∈ {1, . . . , n}. By induction hypothesis,
σaddeval(Mi)⇓Σ′ M ′

i = σ′Ni for all i ∈ {1, . . . , n}. By definition of ⇓Σ′ ,
σaddeval(M) = eval f(σaddeval(M1), . . . , σaddeval(Mn))⇓Σ′ σ′N = M ′.

2
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The following lemma shows the soundness of the rewrite rules of h in Σ′ with
respect to these rewrite rules in Σ. When h is a destructor, this is proved using the
previous two lemmas, and when h is a constructor, this follows from the definition of
“Σ′ models Σ”. Lemma 14 extends this result to a term evaluation D by induction
on D.

Lemma 13 If h(N1, . . . , Nn) → N is in defΣ(h), Σ ` Mi = σNi for all i ∈
{1, . . . , n}, Σ ` M = σN , and nfS,Σ({M1, . . . ,Mn,M}), then there exist h(N ′

1,
. . . , N ′

n) → N ′ in defΣ′(h) and σ′ such that Mi = σ′N ′
i for all i ∈ {1, . . . , n} and

M = σ′N ′.

Proof Case 1: h is a constructor in Σ. We have Σ ` M = h(M1, . . . ,Mn). The
result follows from Property S4.

Case 2: h is a destructor in Σ. By Property S2, there exists σ0 such that Σ `
σ0x = σx for all x ∈ fv(N1, . . . , Nn, N) and nfS,Σ({M1, . . . ,Mn,M} ∪ {σ0x |
x ∈ fv(N1, . . . , Nn, N)}). So Σ ` M = σ0N and Σ ` Mi = σ0Ni for all
i ∈ {1, . . . , n}. By Lemma 12, σ0addeval(N)⇓Σ′ M and σ0addeval(Ni)⇓Σ′ Mi

for all i ∈ {1, . . . , n}. By Lemma 11, there exist N ′
1, . . . , N

′
n, N ′, σ1, and σ′ such

that addeval(N1, . . . , Nn, N) ⇓′ ((N ′
1, . . . , N

′
n, N ′), σ1), σ′N ′

i = Mi for all i ∈
{1, . . . , n}, and σ′N ′ = M . Then h(N ′

1, . . . , N
′
n) → N ′ is in defΣ′(h), σ′N ′

i = Mi

for all i ∈ {1, . . . , n}, and σ′N ′ = M . 2

Lemma 14 Let D be a plain term evaluation. If D ⇓Σ M , Σ ` M ′ = M , Σ ` D′ =
D, and nfS,Σ({M ′, D′}), then D′ ⇓Σ′ M ′.

Proof The proof is by induction on D.

• Case D = M : We have M ⇓Σ M , so Σ ` D′ = D = M = M ′ and
nfS,Σ({M ′, D′}) so D′ = M ′, and D′ ⇓Σ′ M ′.

• Case D = eval h(D1, . . . , Dn): Since D ⇓Σ M , we have that h(N1, . . . , Nn) →
N is in defΣ(h), Di ⇓Σ Mi and Σ ` σNi = Mi for all i ∈ {1, . . . , n}, and
σN = M . So Σ ` σN = M ′. Since Σ ` D′ = D, we have D′ =
eval h(D′

1, . . . , D
′
n), with Σ ` D′

i = Di for all i ∈ {1, . . . , n}. By Prop-
erty S2, there exist M ′

1, . . . ,M
′
n such that Σ ` Mi = M ′

i for all i ∈ {1, . . . , n}
and nfS,Σ({M ′, D′,M ′

1, . . . ,M
′
n}). By induction hypothesis, D′

i ⇓Σ′ M ′
i for all

i ∈ {1, . . . , n}. By Lemma 13, there exist h(N ′
1, . . . , N

′
n) → N ′ in defΣ′(h)

and σ′ such that M ′ = σ′N ′ and σ′N ′
i = M ′

i for all i ∈ {1, . . . , n}. Then
D′ ⇓Σ′ σ′N ′ = M ′. 2

We define the function removeeval such that removeeval(D) = M where D is a
term evaluation that contains no destructor, and M is the term obtained by removing
any eval before the function symbols of D.

Lemma 15 Assume that D is a plain term evaluation that contains no destructor. If
D ⇓′ (M,σ) then Σ ` σremoveeval(D) = M .
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Assume that D1, . . . , Dn are plain term evaluations that contain no destructor.
If (D1, . . . , Dn) ⇓′ ((M1, . . . ,Mn), σ) then Σ ` σremoveeval(Di) = Mi for all
i ∈ {1, . . . , n}.

Proof The proof is by mutual induction following the definition of ⇓′.

• Case D = M : We have σ = ∅, so Σ ` σM = M .

• Case D = eval f(D1, . . . , Dn): We have eval f(D1, . . . , Dn) ⇓′ (σuN,σuσ)
where (D1, . . . , Dn) ⇓′ ((M1, . . . ,Mn), σ), f is a constructor in Σ, f(N1, . . . ,
Nn) → N is in defΣ′(f) (with new variables), and σu is the most general unifier
of (M1, N1), . . . , (Mn, Nn). Then by Property S3, Σ ` f(N1, . . . , Nn) = N .
By induction hypothesis, Σ ` σremoveeval(Di) = Mi. Moreover we have
σuMi = σuNi. Hence we obtain Σ ` σuσremoveeval(eval f(D1, . . . , Dn)) =
f(σuσremoveeval(D1), . . . , σuσremoveeval(Dn)) = f(σuM1, . . . , σuMn) =
f(σuN1, . . . , σuNn) = σuN .

• Case (D1, . . . , Dn): We have (D1, . . . , Dn) ⇓′ ((σ′M1, . . . , σ
′Mn−1,Mn),

σ′σ) where (D1, . . . , Dn−1) ⇓′ ((M1, . . . ,Mn−1), σ) and σDn ⇓′ (Mn, σ′).
Then by induction hypothesis, Σ ` σremoveeval(Di) = Mi for i ∈ {1, . . . , n−
1} and Σ ` σ′removeeval(σDn) = Mn. Hence, Σ ` σ′σremoveeval(Di) =
σ′Mi for i ∈ {1, . . . , n − 1} and Σ ` σ′σremoveeval(Dn) = Mn. 2

The following two lemmas show a completeness property: we do not lose precision
by translating computation in Σ into computations in Σ′. The proof of Lemma 16 relies
on Lemma 15 for destructor applications.

Lemma 16 If h(N1, . . . , Nn) → N is in defΣ′(h) then there exists h(N ′
1, . . . , N

′
n) →

N ′ in defΣ(h) and σ such that Σ ` Ni = σN ′
i for all i ∈ {1, . . . , n} and Σ ` N =

σN ′.

Proof Case 1: h is a constructor in Σ. By Property S3, Σ ` h(N1, . . . , Nn) =
N . Let σ be defined by σxi = Ni for all i ∈ {1, . . . , n}, N ′

i = xi for all i ∈
{1, . . . , n}, and N ′ = h(x1, . . . , xn). We have h(N ′

1, . . . , N
′
n) → N ′ in defΣ(h)

because h(x1, . . . , xn) → h(x1, . . . , xn) is in defΣ(h). We also have Σ ` Ni = σN ′
i

for all i ∈ {1, . . . , n} and Σ ` N = h(N1, . . . , Nn) = σN ′.
Case 2: h is a destructor in Σ. Then there exists h(N ′

1, . . . , N
′
n) → N ′ in defΣ(h),

such that addeval(N ′
1, . . . , N

′
n, N ′) ⇓′ ((N1, . . . , Nn, N), σ). By Lemma 15, Σ `

N = σN ′ and for all i ∈ {1, . . . , n}, Σ ` Ni = σN ′
i . 2

Lemma 17 Let D be a plain term evaluation. If Σ ` D′ = D and D′ ⇓Σ′ M ′ then
D ⇓Σ M for some M such that Σ ` M = M ′.

Proof The proof is by induction on D.

• Case D = M : We have D ⇓Σ M . Moreover Σ ` D′ = D, so D′ is also a term,
and M ′ = D′. Finally, D = M , D′ = M ′, and Σ ` D′ = D, so Σ ` M = M ′.
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• Case D = eval h(D1, . . . , Dn): Since Σ ` D′ = D, we have D′ = eval h(D′
1,

. . . , D′
n) with Σ ` D′

i = Di. Since D′ ⇓Σ′ M ′, there exist h(N1, . . . , Nn) → N
in defΣ′(h) and σ such that M ′ = σN , and for all i ∈ {1, . . . , n}, D′

i ⇓Σ′ σNi.
By induction hypothesis, Di ⇓Σ Mi with Σ ` Mi = σNi.

By Lemma 16, there exist h(N ′
1, . . . , N

′
n) → N ′ in defΣ(h) and σ′, such that

Σ ` N = σ′N ′ and for all i ∈ {1, . . . , n}, Σ ` Ni = σ′N ′
i . Then Di ⇓Σ Mi,

Σ ` Mi = σNi = σσ′N ′
i , and h(N ′

1, . . . , N
′
n) → N ′ is in defΣ(h), so

D ⇓Σ σσ′N ′. Moreover, Σ ` M ′ = σN = σσ′N ′. 2

The following lemma is useful to deal with rule (Red Fun 2): when D fails to
evaluate, the lemma ensures that D′ also fails to evaluate, even with the equational
theory of Σ. To this end, Lemma 18 requires D′ ⇓Σ M ′, whereas Lemma 17 requires
D′ ⇓Σ′ M ′.

Lemma 18 Let D be a plain term evaluation. If Σ ` D′ = D and D′ ⇓Σ M ′ then
D ⇓Σ M for some M such that Σ ` M = M ′.

Proof The proof is by induction on D.

• Case D = M : We have D ⇓Σ M . Moreover Σ ` D′ = D, so D′ is also a term,
and M ′ = D′. Finally, D = M , D′ = M ′, and Σ ` D′ = D, so Σ ` M = M ′.

• Case D = eval h(D1, . . . , Dn): Since Σ ` D′ = D, we have D′ = eval h(D′
1,

. . . , D′
n) with Σ ` D′

i = Di. Since D′ ⇓Σ M ′, there exist h(N1, . . . , Nn) → N
in defΣ(h) and σ such that M ′ = σN , and for all i ∈ {1, . . . , n}, D′

i ⇓Σ M ′
i

with Σ ` M ′
i = σNi. By induction hypothesis, Di ⇓Σ Mi with Σ ` Mi = σNi.

Then D = eval h(D1, . . . , Dn)⇓Σ σN and Σ ` σN = M ′. 2

B.2 Proof of Lemma 1

Lemma 1 is an obvious consequence of the following lemma.

Lemma 19 Let P0 be a closed, unevaluated biprocess.
If P0 →∗

Σ≡ P ′
0, Σ ` Q′

0 = P ′
0, and nfS,Σ({Q′

0}), then P0 →∗
Σ′,Σ≡ Q′

0 by a
reduction whose intermediate biprocesses Q all satisfy nfS,Σ({Q}).

Conversely, if P0 →∗
Σ′,Σ≡ Q′

0 then there exists P ′
0 such that Σ ` Q′

0 = P ′
0 and

P0 →∗
Σ≡ P ′

0.

Proof We write VC (P ) when P is a closed process whose terms M are either vari-
ables or terms of the form diff[M1,M2] where M1 and M2 are closed terms that do
not contain diff. (Function symbols prefixed by eval are not constrained.) We have the
following properties:

P1. If VC (P ) and P ≡ P ′ then VC (P ′). The proof is by induction on the derivation
of P ≡ P ′. All cases are easy, since ≡ cannot change terms.
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P2. If VC (P ) and P →Σ P ′ then VC (P ′). The proof is by induction on the deriva-
tion of P →Σ P ′. The only change of terms is done by the substitution {M/x}
in the rules (Red I/O) and (Red Fun 1). This substitution replaces a variable with
a closed term M = diff[M1,M2], hence the result. (For (Red I/O), M is of the
form diff[M1,M2] because of VC (P ).)

P3. If VC (P{diff[M1,M2]/x}), Σ ` P{diff[M1,M2]/x} = P ′′, and nfS,Σ(P ∪
{P ′′}), then there exist P ′, M ′

1, and M ′
2 such that Σ ` P = P ′, Σ ` M1 = M ′

1,
Σ ` M2 = M ′

2, P ′′ = P ′{diff[M ′
1,M

′
2]/x}, and nfS,Σ(P ∪ {P ′,M ′

1,M
′
2}).

Since P0 is closed and unevaluated, VC (P0). Therefore, by P1 and P2, if P0 →∗
Σ≡ P ,

then VC (P ). Moreover, the only process P such that Σ ` P0 = P and nfS,Σ({P})
is P0 by Lemma 4.

Let us show that, if P ≡ P ′, Σ ` Q′ = P ′, and nfS,Σ(P ∪ {Q′}), then there exists
Q such that Σ ` Q = P , nfS,Σ(P ∪ {Q}), and Q ≡ Q′. The proof is by induction on
the derivation of P ≡ P ′. All cases are easy, since ≡ does not depend on terms.

Let us show that, if VC (P ), P →Σ P ′, Σ ` Q′ = P ′, and nfS,Σ(P ∪ {Q′}), then
there exists Q such that Σ ` Q = P , nfS,Σ(P ∪ {Q}), and Q →Σ′,Σ Q′. The proof is
by induction on the derivation of P →Σ P ′.

• Case (Red I/O): Since VC (P ), we have P = diff[M1,M2]〈N〉.R | diff[M ′
1,

M ′
2](x).R′ →Σ R | R′{N/x} = P ′ with Σ ` M1 = M ′

1 and Σ ` M2 = M ′
2.

Since Σ ` Q′ = P ′ and nfS,Σ(P ∪ {Q′}), we have Q′ = R1 | R′
1{N1/x} for

some R1, R′
1, N1 such that Σ ` R1 = R, Σ ` R′

1 = R′, Σ ` N1 = N , and
nfS,Σ(P ∪ {R1, R

′
1, N1}) by P3.

By Property S2, there exist M ′′
1 and M ′′

2 such that Σ ` M ′′
1 = M1 = M ′

1,
Σ ` M ′′

2 = M2 = M ′
2, and nfS,Σ(P ∪ {R1, R

′
1, N1,M

′′
1 ,M ′′

2 }).

We let Q = diff[M ′′
1 ,M ′′

2 ]〈N1〉.R1 | diff[M ′′
1 ,M ′′

2 ](x).R′
1. Then Σ ` Q =

P . Moreover nfS,Σ(P ∪ {Q}) since nfS,Σ(P ∪ {R1, R
′
1, N1,M

′′
1 ,M ′′

2 }), and
Q →Σ′,Σ Q′, hence the result.

• Case (Red Fun 1): We have P = let x = D in R else R′ →Σ R{diff[M,
M ′]/x} = P ′ with fst(D)⇓Σ M and snd(D)⇓Σ M ′. Since Σ ` Q′ = P ′ and
nfS,Σ(P ∪ {Q′}), we have Q′ = R1{diff[M1,M

′
1]/x} for some R1,M1,M

′
1

such that Σ ` R1 = R, Σ ` M1 = M , Σ ` M ′
1 = M ′, and nfS,Σ(P ∪

{R1,M1,M
′
1}) by P3.

By Property S2, there exist D1 and R′
1 such that Σ ` D1 = D, Σ ` R′

1 = R′,
and nfS,Σ(P ∪ {D1, R

′
1, R1,M1,M

′
1}). By Lemma 14, fst(D1)⇓Σ′ M1 and

snd(D1)⇓Σ′ M ′
1. Let Q = let x = D1 in R1 else R′

1. Then Σ ` Q = P ,
nfS,Σ(P ∪ {Q}), and Q →Σ′,Σ Q′.

• Case (Red Fun 2): We have P = let x = D in R else P ′ →Σ P ′, there exists
no M such that fst(D)⇓Σ M , and there exists no M ′ such that snd(D)⇓Σ M ′.
We have Σ ` Q′ = P ′ and nfS,Σ(P ∪ {Q′}).

By Property S2, there exist D1 and R1 such that Σ ` D1 = D, Σ ` R1 = R
and nfS,Σ(P∪{R1, D1, Q

′}). Then, there exists no M such that fst(D1)⇓Σ M ,
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and there exists no M ′ such that snd(D1)⇓Σ M ′. (Otherwise, by Lemma 18,
there would exist M such that fst(D)⇓Σ M , and M ′ such that snd(D)⇓Σ M ′.)
Let Q = let x = D1 in R1 else Q′. Then Σ ` Q = P , nfS,Σ(P ∪ {Q}), and
Q →Σ′,Σ Q′.

• Case (Red Repl): We have P = !R →Σ R | !R = P ′. Since Σ ` Q′ = P ′ and
nfS,Σ(P ∪ {Q′}), we have Q′ = R1 | !R1 for some R1 such that Σ ` R1 = R.
Let Q = !R1. Then we have Σ ` Q = P , nfS,Σ(P ∪ {Q}), and Q →Σ′,Σ Q′.

• Cases (Red Par) and (Red Res): Easy by induction hypothesis.

• Case (Red ≡): Easy using the corresponding property for ≡ and the induction
hypothesis.

Therefore, if P0 →∗
Σ≡ P ′

0, Σ ` Q′
0 = P ′

0, and nfS,Σ({Q′
0}), then there exists Q0

such that nfS,Σ({Q0}), Σ ` Q0 = P0, and Q0 →∗
Σ′,Σ≡ Q′

0 by a reduction whose in-
termediate biprocesses Q all satisfy nfS,Σ({Q}), simply by applying several times the
results shown above. Since the only process P such that Σ ` P0 = P and nfS,Σ({P})
is P0, we have Q0 = P0, so we conclude that if P0 →∗

Σ≡ P ′
0, Σ ` Q′

0 = P ′
0, and

nfS,Σ({Q′
0}), then P0 →∗

Σ′,Σ≡ Q′
0 by a reduction whose intermediate biprocesses Q

all satisfy nfS,Σ({Q}).
For the converse, we show that, if P ≡ P ′ and Σ ` Q = P , then there exists Q′

such that Σ ` Q′ = P ′ and Q ≡ Q′. The proof is by induction on the derivation of
P ≡ P ′. All cases are easy, since ≡ does not depend on terms.

We also show that, if VC (P ), P →Σ′,Σ P ′ and Σ ` Q = P , then there exists Q′

such that Σ ` Q′ = P ′, and Q →Σ Q′. The proof is by induction on the derivation of
P →Σ′,Σ P ′.

• Case (Red I/O): Since VC (P ), we have P = diff[M1,M2]〈N〉.R | diff[M1,
M2](x).R′ →Σ′,Σ R | R′{N/x} = P ′. Since Σ ` Q = P , we have Q =

diff[M ′
1,M

′
2]〈N

′〉.R1 | diff[M ′′
1 ,M ′′

2 ](x).R′
1 with Σ ` M1 = M ′

1 = M ′′
1 ,

Σ ` M2 = M ′
2 = M ′′

2 , Σ ` N ′ = N , Σ ` R = R1, and Σ ` R′ = R′
1.

Then Q →Σ Q′ = R1 | R′
1{N

′/x} with Σ ` Q′ = P ′.

• Case (Red Fun 1): We have P = let x = D in R else R′ →Σ′,Σ R{diff[M1,
M2]/x} = P ′ with fst(D)⇓Σ′ M1 and snd(D)⇓Σ′ M2. Since Σ ` Q =
P , we have Q = let x = D′ in R1 else R′

1 with Σ ` D′ = D, Σ `
R1 = R, and Σ ` R′

1 = R′. By Lemma 17, fst(D′)⇓Σ M ′
1 with Σ `

M1 = M ′
1 and snd(D′)⇓Σ M ′

2 with Σ ` M2 = M ′
2. Hence Q →Σ Q′ =

C ′[R1{diff[M ′
1,M

′
2]/x}] with Σ ` Q′ = P ′.

• Case (Red Fun 2): We have P = let x = D in R else P ′ →Σ′,Σ P ′, there exists
no M1 such that fst(D)⇓Σ M1, and there exists no M2 such that snd(D)⇓Σ M2.
Since Σ ` Q = P , we have Q = let x = D′ in R1 else Q′ with Σ ` D′ =
D, Σ ` R1 = R, and Σ ` Q′ = P ′. Then, there exists no M ′

1 such that
fst(D′)⇓Σ M ′

1, and there exists no M ′
2 such that snd(D′)⇓Σ M ′

2. (Otherwise,
by Lemma 18, there would exist M1 such that fst(D)⇓Σ M1 and M2 such that
snd(D)⇓Σ M2.) Hence Q →Σ Q′ and Σ ` Q′ = P ′.
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• Case (Red Repl): We have P = !R →Σ′,Σ R | !R = P ′. Since Σ ` Q = P , we
have Q = !R1 with Σ ` R1 = R. Let Q′ = R1 | !R1. So Σ ` Q′ = P ′ and
Q →Σ Q′.

• Cases (Red Par) and (Red Res): Easy by induction hypothesis.

• Case (Red ≡): Easy using the corresponding property for ≡ and the induction
hypothesis.

We conclude that, if P0 →∗
Σ′,Σ≡ Q′

0 then there exists P ′
0 such that Σ ` Q′

0 = P ′
0 and

P0 →∗
Σ≡ P ′

0, simply by applying several times the results shown above, with Q = P
in the first application. 2

B.3 Proof of Lemma 2

We first show that it is enough to consider unevaluated processes as initial configura-
tions (Lemma 22), then prove Lemma 2 itself.

Let P R P ′ if and only if P ′ is obtained from P by adding some lets on terms with
constructors that occur in inputs or outputs (for instance transforming M〈N〉.P into
let x = M in let y = N in x〈y〉.P where x and y are fresh variables), prefixing some
constructors in lets with eval, and replacing some terms M with diff[fst(M), snd(M)].

For the next two proofs, we consider an alternative, equivalent definition of ≡, in
which a symmetric rule Q ≡ P is added for each rule P ≡ Q in the definition of ≡
and the implication P ≡ Q ⇒ Q ≡ P is removed from the definition of ≡.

Lemma 20 If P R Q and P ≡ P ′ then there exists Q′ such that P ′ R Q′ and Q ≡ Q′.
If P R Q and P →Σ P ′ then there exists Q′ such that P ′ R Q′ and Q →+

Σ Q′.

Proof Obvious, by induction on the derivation of P ≡ P ′ and P →Σ P ′ respectively.
2

Lemma 21 If Σ ` P = Q, Q R R, and R ≡ R′ then there exists P ′ and Q′ such that
Σ ` P ′ = Q′, Q′ R R′, and P ≡ P ′.

If Σ ` P = Q, Q R R, and R →Σ R′ then there exists P ′ and Q′ such that
Σ ` P ′ = Q′, Q′ R R′, and P →Σ P ′ or P = P ′.

Proof Obvious, by induction on the derivation of R ≡ R′ and R →Σ R′ respectively.
2

Lemma 22 Let P0 be a closed biprocess. The hypotheses of Corollary 1 are true if
and only if they are true with unevaluated(C[P0]) instead of C[P0].

Proof We have C[P0] R unevaluated(C[P0]). We first show that if the hypotheses
of Corollary 1 are true for unevaluated(C[P0]), then they are true for C[P0].
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• If C[P0] →∗
Σ≡ C ′

1[N1〈M1〉.Q1 | N ′
1(x).R1], then by Lemma 20, we have

unevaluated(C[P0]) →∗
Σ≡ P ′ with C ′

1[N1〈M1〉.Q1 | N ′
1(x).R1] R P ′. Then

we have P ′ →∗
Σ C ′[N〈M〉.Q | N ′(x).R] with C ′

1 R C ′, fst(N) = fst(N1),
snd(N) = snd(N1), fst(N ′) = fst(N ′

1), snd(N ′) = snd(N ′
1), fst(M) =

fst(M1), snd(M) = snd(M1), Q1 R Q, and R1 R R, by reducing the term
evaluations of constructors that may occur above inputs and outputs in P ′. So
unevaluated(C[P0]) →∗

Σ≡ C ′[N〈M〉.Q | N ′(x).R], with fst(N) = fst(N1),
snd(N) = snd(N1), fst(N ′) = fst(N ′

1), and snd(N ′) = snd(N ′
1). Hence, if the

first hypothesis of Corollary 1 is true with unevaluated(C[P0]), then it is true
with C[P0].

• If C[P0] →∗
Σ≡ C ′

1[let y1 = D1 in Q1 else R1], then by the same reasoning as
above, unevaluated(C[P0]) →∗

Σ≡ C ′[P ] where let y1 = D1 in Q1 else R1 R
P . Hence, we have P = let y1 = D′

1 in Q′
1 else R′

1 where D′
1 is obtained

by prefixing some constructors of D1 with eval and reorganizing diffs. We have
fst(D1)⇓Σ M1 if and only if fst(D′

1)⇓Σ M1, if and only if snd(D′
1)⇓Σ M2 (by

the second hypothesis of Corollary 1 for unevaluated(C[P0])), if and only if
snd(D1)⇓Σ M2. This yields the second hypothesis of Corollary 1 for C[P0].

We now show the converse: if the hypotheses of Corollary 1 are true for C[P0], then
they are true for unevaluated(C[P0]).

• Assume that unevaluated(C[P0]) →∗
Σ≡ C ′

1[N1〈M1〉.Q1 | N ′
1(x).R1]. By

Lemma 21, C[P0] →∗
Σ≡ P with Σ ` P = P ′ and P ′ R C ′

1[N1〈M1〉.Q1 |
N ′

1(x).R1]. Then P = C ′[N〈M〉.Q | N ′(x).R] with Σ ` fst(N) = fst(N1),
Σ ` snd(N) = snd(N1), Σ ` fst(N ′) = fst(N ′

1), Σ ` snd(N ′) = snd(N ′
1),

Σ ` fst(M) = fst(M1), and Σ ` snd(M) = snd(M1). So, if the first hypothesis
of Corollary 1 is true with C[P0], then it is true with unevaluated(C[P0]).

• Assume that unevaluated(C[P0]) →∗
Σ≡ C ′

1[let y1 = D1 in Q1 else R1].
By Lemma 21, C[P0] →∗

Σ≡ P with Σ ` P = P ′ and P ′ R C ′
1[let y1 =

D1 in Q1 else R1]. We have two cases:

– Case 1: let y1 is introduced by R. Then R1 = 0 and D1 does not con-
tain destructors. Hence there exists M1 such that fst(D1)⇓Σ M1 and there
exists M2 such that snd(D1)⇓Σ M2.

– Case 2: let y1 comes from P ′. Hence P = C ′[let y1 = D′
1 in Q′

1

else R′
1] where D′

1 is obtained by removing some eval prefixes of D1,
reorganizing diffs, and replacing terms with equal terms modulo Σ. We
have fst(D1)⇓Σ M1 for some M1 if and only if fst(D′

1)⇓Σ M1 for some
M1, if and only if snd(D′

1)⇓Σ M2 for some M2 (by the second hypothesis
of Corollary 1 for C[P0]), if and only if snd(D1)⇓Σ M2 for some M2.

This yields the second hypothesis of Corollary 1 for unevaluated(C[P0]). 2

Lemma 2 is an obvious consequence of the following lemma.
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Lemma 23 Let P0 be a closed biprocess. Suppose that, for all plain evaluation con-
texts C, all evaluation contexts C ′, and all reductions unevaluated(C[P0]) →∗

Σ′,Σ P
whose intermediate biprocesses P ′ all satisfy nfS,Σ({P ′}),

1. if P ≡ C ′[N〈M〉.Q | N ′(x).R] and fst(N) = fst(N ′), then Σ ` snd(N) =
snd(N ′),

2. if P ≡ C ′[let x = D in Q else R] and fst(D)⇓Σ′ M1 for some M1, then
snd(D)⇓Σ M2 for some M2,

as well as the symmetric properties where we swap fst and snd. Then P0 satisfies the
hypotheses of Corollary 1.

Conversely, if P0 satisfies the hypotheses of Corollary 1, then for all plain evalua-
tion contexts C, evaluation contexts C ′, and reductions unevaluated(C[P0]) →

∗
Σ′ P ,

we have properties 1 and 2 above, as well as the symmetric properties where we swap
fst and snd.

Proof By Lemma 22, we can work with unevaluated(C[P0]) instead of C[P0]. We
show the two hypotheses of Corollary 1.

• Assume that unevaluated(C[P0]) →∗
Σ≡ C ′[N〈M〉.Q | N ′(x).R] and Σ `

fst(N) = fst(N ′). By Property S2, there exists P ′ such that Σ ` P ′ =
C ′[N〈M〉.Q | N ′(x).R] and nfS,Σ({P ′}). By Lemma 19, unevaluated(C[P0])

→∗
Σ′,Σ≡ P ′. Moreover, P ′ = C ′′[diff[N1, N2]〈M

′〉.Q1 | diff[N ′
1, N

′
2](x).R1],

where Σ ` N1 = fst(N), Σ ` N2 = snd(N), Σ ` N ′
1 = fst(N ′), and

Σ ` N ′
2 = snd(N ′). Since nfS,Σ({P ′}), N1 = N ′

1. Hence, by hypothesis 1,
Σ ` N2 = N ′

2. So Σ ` snd(N) = snd(N ′).

We obtain the case unevaluated(C[P0]) →∗≡ C ′[N〈M〉.Q | N ′(x).R] and
Σ ` snd(N) = snd(N ′) by symmetry.

• Assume that unevaluated(C[P0]) →∗
Σ≡ C ′[let y = D in Q else R] and there

exists M1 such that fst(D)⇓Σ M1. By Property S2, there exist P ′, M ′
1, and D′

such that Σ ` P ′ = C ′[let y = D in Q else R], Σ ` M ′
1 = M1, Σ ` D′ = D,

and nfS,Σ({P ′,M ′
1, D

′}). Then P ′ = C ′′[let y = D′ in Q′ else R′]. By
Lemma 19, unevaluated(C[P0]) →∗

Σ′,Σ≡ P ′. By Lemma 14, fst(D′)⇓Σ′ M ′
1.

By hypothesis 2, snd(D′)⇓Σ M ′
2. By Lemma 18, since Σ ` snd(D′) = snd(D)

and snd(D′)⇓Σ M ′
2, we have snd(D)⇓Σ M2.

We obtain the case unevaluated(C[P0]) →∗≡ C ′[let y = D in Q else R] and
there exists M2 such that snd(D)⇓Σ M2 by symmetry.

Next, we prove the converse property.

• Assume that unevaluated(C[P0]) →∗
Σ′,Σ≡ C ′[N〈M〉.Q | N ′(x).R] and fst(N) =

fst(N ′). By Lemma 19, we have unevaluated(C[P0]) →∗
Σ≡ C1[N1〈M1〉.Q1 |

N1(x).R1] with Σ ` C ′[N〈M〉.Q | N ′(x).R] = C1[N1〈M1〉.Q1 | N1(x).R1]
so Σ ` N = N1 and Σ ` N ′ = N ′

1. Using the first hypothesis of Corol-
lary 1, since Σ ` fst(N1) = fst(N ′

1), we have Σ ` snd(N1) = snd(N ′
1), hence

Σ ` snd(N) = snd(N ′).
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We obtain the case unevaluated(C[P0]) →∗
Σ′,Σ≡ C ′[N〈M〉.Q | N ′(x).R] and

snd(N) = snd(N ′) by symmetry.

• Assume that unevaluated(C[P0]) →∗
Σ′,Σ≡ C ′[let y = D in Q else R] and

there exists M1 such that fst(D)⇓Σ′ M1. As above, unevaluated(C[P0]) →∗
Σ≡

C1[let y = D1 in Q1 else R1] with Σ ` D1 = D. By Lemma 17, fst(D1)⇓Σ M ′
1

for some M ′
1. Using the second hypothesis of Corollary 1, snd(D1)⇓Σ M ′

2,
hence by Lemma 18, snd(D)⇓Σ M2.

We obtain the case unevaluated(C[P0]) →∗
Σ′,Σ≡ C ′[let y = D in Q else R]

and there exists M2 such that snd(D)⇓Σ′ M2 by symmetry. 2

C Proof of Lemma 3

When F is a set that contains patterns, facts, sequences of patterns or facts, clauses, en-
vironments that map variables and names to pairs of patterns, . . . , we say that nfS,Σ(F)
if and only if all patterns that appear in F are irreducible by S and for all p1, p2 sub-
patterns of elements of F , if Σ ` p1 = p2 then p1 = p2.

We say that nf ′S,Σ(F) if and only if nfS,Σ(F ′) where F ′ is obtained from F by
removing nounif facts. When D is a derivation, we say that nf ′S,Σ(D) when nf ′S,Σ(F)
where F is the set of intermediately derived facts of D.

We say that F1 ∧ · · · ∧ Fn ∼ F ′
1 ∧ · · · ∧ F ′

n when, for all i ∈ {1, . . . , n}, either
Fi = F ′

i or Fi and F ′
i are nounif facts and Σ ` Fi = F ′

i . We say that Σ ` F1 ∧ · · · ∧
Fn ∼ F ′

1 ∧ · · · ∧ F ′
n when for all i ∈ {1, . . . , n}, Σ ` Fi = F ′

i . This definition is
naturally extended to clauses.

The special treatment of nounif facts in the definition of ∼ and in Lemma 3 is
necessary so that the following results hold. In particular, Lemma 28 would be wrong
for Clauses (Rt) and (Rt′), which contain nounif facts.

Lemma 24 If h(N1, . . . , Nn) → N is in defΣ′(h), Σ ` N ′′ = σN , Σ ` N ′′
i =

σNi for all i ∈ {1, . . . , n}, and nfS,Σ({N ′′
1 , . . . , N ′′

n , N ′′}), then there exist a closed
substitution σ′ and h(N ′

1, . . . , N
′
n) → N ′ in defΣ′(h) such that N ′′ = σ′N ′ and

N ′′
i = σ′N ′

i for all i ∈ {1, . . . , n}.

Proof The result follows from Lemmas 16 and 13. 2

The following lemma generalizes Lemma 15 to the case in which D may contain
destructors. It is used in the proof of Lemma 26 below.

Lemma 25 Let D be a plain term evaluation. If D ⇓′ (p, σ) and σ′ is a closed substi-
tution, then there exists p′ such that σ′σD ⇓Σ p′ and Σ ` p′ = σ′p.

Let D1, . . . , Dn be plain term evaluations. If (D1, . . . , Dn) ⇓′ ((p1, . . . , pn), σ)
and σ′ is a closed substitution then there exist p′1, . . . , p

′
n such that for all i ∈ {1, . . . ,

n}, σ′σDi ⇓Σ p′i and Σ ` p′i = σ′pi.

Proof The proof is by mutual induction following the definition of ⇓′.
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• Case D = p: We have p ⇓′ (p, ∅), σ = ∅, so σ′σD = σ′p⇓Σ σ′p, so we have
the result with p′ = σ′p.

• Case D = eval h(D1, . . . , Dn): Since eval h(D1, . . . , Dn) ⇓′ (p, σ), there exist
h(N1, . . . , Nn) → N in defΣ′(h), p1, . . . , pn, σ′′, and σu such that (D1, . . . ,
Dn) ⇓′ ((p1, . . . , pn), σ′′), σu is a most general unifier of (p1, . . . , pn) and
(N1, . . . , Nn), p = σuN , and σ = σuσ′′. By induction hypothesis, there ex-
ist p′1, . . . , p

′
n such that for all i ∈ {1, . . . , n}, σ′σuσ′′Di ⇓Σ p′i and Σ ` p′i =

σ′σupi, so σ′σDi ⇓Σ p′i. By Lemma 16, there exist h(N ′
1, . . . , N

′
n) → N ′

in defΣ(h) and σ1 such that Σ ` Ni = σ1N
′
i for all i ∈ {1, . . . , n} and

Σ ` N = σ1N
′. So Σ ` p′i = σ′σupi = σ′σuNi = σ′σuσ1N

′
i and Σ `

σ′p = σ′σuN = σ′σuσ1N
′. Let p′ = σ′σuσ1N

′. We have σ′σD ⇓Σ p′ and
Σ ` p′ = σ′p.

• Case (D1, . . . , Dn): Since (D1, . . . , Dn) ⇓′ ((p1, . . . , pn), σ), we have (D1,
. . . , Dn−1) ⇓′ ((p′′1 , . . . , p′′n−1), σ1), σ1Dn ⇓′ (pn, σ2), pi = σ2p

′′
i for all i ∈

{1, . . . , n−1}, and σ = σ2σ1. By induction hypothesis, there exist p′1, . . . , p
′
n−1

such that for all i ∈ {1, . . . , n − 1}, σ′σ2σ1Di ⇓Σ′ p′i and Σ ` p′i = σ′σ2p
′′
i ,

so σ′σDi ⇓Σ′ p′i and Σ ` p′i = σ′pi. Also by induction hypothesis, there exists
p′n such that σ′σ2σ1Dn ⇓Σ′ p′n and Σ ` p′n = σ′pn, so σ′σDn ⇓Σ′ p′n and Σ `
p′n = σ′pn. 2

Lemma 26 Let D be a plain term evaluation such that the subterms M of D are
variables or names. If ρ(D) ⇓′ (p′, σ′), σ is a closed substitution, Σ ` p = σp′,
Σ ` σ′

0ρ
′ = σσ′ρ, and nfS,Σ({p, σ′

0ρ
′}), then there exist σ′′, p′′, σ′′

0 such that
ρ′(D) ⇓′ (p′′, σ′′), σ′

0 = σ′′
0σ′′ except on fresh variables introduced in the compu-

tation of ρ′(D) ⇓′ (p′′, σ′′), and p = σ′′
0p′′.

Let Di (i ∈ {1, . . . , n}) be plain term evaluations such that the subterms M
of Di are variables or names. If (ρ(D1), . . . , ρ(Dn)) ⇓′ ((p′1, . . . , p

′
n), σ′), σ is a

closed substitution, Σ ` pi = σp′i for all i ∈ {1, . . . , n}, Σ ` σ′
0ρ

′ = σσ′ρ, and
nfS,Σ({p1, . . . , pn, σ′

0ρ
′}), then there exist σ′′, p′′1 , . . . , p′′n, σ′′

0 such that (ρ′(D1), . . . ,
ρ′(Dn)) ⇓′ ((p′′1 , . . . , p′′n), σ′′), σ′

0 = σ′′
0σ′′ except on fresh variables introduced in the

computation of (ρ′(D1), . . . , ρ
′(Dn)) ⇓′ ((p′′1 , . . . , p′′n), σ′′), and pi = σ′′

0p′′i for all
i ∈ {1, . . . , n}.

Proof We prove the first property. (The second one follows in a similar way.) By
Lemma 25, there exists p1 such that σσ′ρ(D)⇓Σ p1 and Σ ` p1 = σp′. Then Σ ` p =
p1, Σ ` σ′

0ρ
′(D) = σσ′ρ(D), and nfS,Σ({p, σ′

0ρ
′(D)}). So by a variant of Lemma 14

for patterns instead of terms, σ′
0ρ

′(D)⇓Σ′ p. By a variant of Lemma 11 for patterns
instead of terms, we obtain the desired result. 2

Lemma 27 Let P0 be a closed, unevaluated process. If [[P ]]ρss′H is called during the
generation of [[P0]]ρ0∅∅∅, σ is a closed substitution, Σ ` ρ2 = σρ, Σ ` s2 = σs,
Σ ` s′2 = σs′, Σ ` H2 ∼ σH , and nf ′S,Σ({ρ2, s2, s

′
2, H2}), then there exist σ1,

ρ1, H1, s1, s′1 such that ρ2 = σ1ρ1, s2 = σ1s1, s′2 = σ1s
′
1, H2 ∼ σ1H1, and

[[P ]]ρ1s1s
′
1H1 is called during the generation of [[P0]]ρ0∅∅∅.
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Proof The process P is a subprocess of P0. We proceed by induction on P : we show
the result for P0 itself, and we show that if the result is true for some occurrence of P ,
then it is also true for the occurrences of the direct subprocesses of P .

• Case P0: We have ρ2 = ρ0, s2 = s′2 = ∅, and H2 = ∅. Then we obtain the
result by letting σ1 be any substitution, ρ1 = ρ0, s1 = s′1 = ∅, and H1 = ∅.

• Case 0: Void, since it has no subprocesses.

• Case P | Q: Obvious by induction hypothesis.

• Case !P : Assume [[P ]]ρss′H is called. Then ρ = ρ3, s = (s3, i), s′ = (s′3, i),
H = H3, and [[!P ]]ρ3s3s

′
3H3 has been called. Let ρ2, s2, s

′
2, H2 such that

Σ ` ρ2 = σρ, Σ ` s2 = σs, Σ ` s′2 = σs′, Σ ` H2 ∼ σH , and
nf ′S,Σ({ρ2, s2, s

′
2, H2}).

Then ρ2 = ρ4, s2 = (s4, p), s′2 = (s′4, p), H2 = H4 where Σ ` ρ4 = σρ3,
Σ ` s4 = σs3, Σ ` s′4 = σs′3, Σ ` H4 ∼ σH3, and Σ ` p = σi.

By induction hypothesis, there exist σ1, ρ5, s5, s
′
5, H5 such that ρ4 = σ1ρ5,

s4 = σ1s5, s′4 = σ1s
′
5, H4 ∼ σ1H5, and [[!P ]]ρ5s5s

′
5H5 has been called. Since

i is a fresh variable, we can define σ1i = p.

Then [[P ]]ρ5(s5, i)(s
′
5, i)H5 has been called, ρ2 = σ1ρ5, s2 = σ1(s5, i), s′2 =

σ1(s
′
5, i), and H2 ∼ σ1H5.

• Case (νa)P : Assume [[P ]]ρss′H is called. Then ρ = ρ3[a 7→ (a[s], a[s′])] and
[[(νa)P ]]ρ3ss

′H has been called. Let ρ2, s2, s
′
2, H2 such that Σ ` ρ2 = σρ,

Σ ` s2 = σs, Σ ` s′2 = σs′, Σ ` H2 ∼ σH , and nf ′S,Σ({ρ2, s2, s
′
2, H2}).

Then ρ2 = ρ4[a 7→ (a[s2], a[s′2])] where Σ ` ρ4 = σρ3.

By induction hypothesis, there exist σ1, ρ5, s1, s
′
1, H1 such that ρ4 = σ1ρ5,

s2 = σ1s1, s′2 = σ1s
′
1, H2 ∼ σ1H1, and [[(νa)P ]]ρ5s1s

′
1H1 has been called.

Then [[P ]](ρ5[a 7→ (a[s1], a[s′1])])s1s
′
1H1 has been called, ρ2 = σ1(ρ5[a 7→

(a[s1], a[s′1])]), s2 = σ1s1, s′2 = σ1s
′
1, and H2 ∼ σ1H1.

• Case M〈N〉.P : Obvious by induction hypothesis.

• Case M(x).P : Assume [[P ]]ρss′H is called. Then ρ = ρ3[x 7→ (x′, x′′)],
s = (s3, x

′), s′ = (s′3, x
′′), H = H3 ∧ msg′(ρ3(M)1, x

′, ρ3(M)2, x
′′), and

[[M(x).P ]]ρ3s3s
′
3H3 has been called. Let ρ2, s2, s

′
2, H2 such that Σ ` ρ2 = σρ,

Σ ` s2 = σs, Σ ` s′2 = σs′, Σ ` H2 ∼ σH , and nf ′S,Σ({ρ2, s2, s
′
2, H2}).

Then ρ2 = ρ4[x 7→ (p′, p′′)], s2 = (s4, p
′), s′2 = (s′4, p

′′), H2 = H4 ∧
msg′(ρ4(M)1, p

′, ρ4(M)2, p
′′) where Σ ` ρ4 = σρ3, Σ ` s4 = σs3, Σ `

s′4 = σs′3, Σ ` H4 ∼ σH3, Σ ` p′ = σx′, and Σ ` p′′ = σx′′. (Since P0 is
unevaluated, M is a variable y or diff[a, a] for some name a. Let u = y in the
first case and u = a in the second case. We have u ∈ dom(ρ3) = dom(ρ4).
We have nf ′S,Σ({ρ2, s2, s

′
2, H2}) so a fortiori nf ′S,Σ({ρ4, H2}), and the first and

third arguments of msg′ are equal to ρ4(M)1 = ρ4(u)1 and ρ4(M)2 = ρ4(u)2
modulo Σ respectively, so they are exactly ρ4(M)1 and ρ4(M)2.)
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By induction hypothesis, there exist σ1, ρ5, s5, s′5, H5 such that ρ4 = σ1ρ5,
s4 = σ1s5, s′4 = σ1s

′
5, H4 ∼ σ1H5, and [[M(x).P ]]ρ5s5s

′
5H5 has been called.

Since x′ and x′′ are fresh variables, we can define σ1x
′ = p′ and σ1x

′′ = p′′.

Then [[P ]](ρ5[x 7→ (x′, x′′)])(s5, x
′)(s′5, x

′′)(H5 ∧ msg′(ρ5(M)1, x
′, ρ5(M)2,

x′′)) has been called, and ρ2 = σ1(ρ5[x 7→ (x′, x′′)]), s2 = σ1(s5, x
′), s′2 =

σ1(s
′
5, x

′′), and H2 ∼ σ1(H5 ∧ msg′(ρ5(M)1, x
′, ρ5(M)2, x

′′)).

• Case let x = D in P else Q:

Subprocess P : Assume [[P ]]ρss′H is called. Then we have ρ = (σ1ρ3)[x 7→
(p1, p

′
1)], s = (σ1s3, p1), s′ = (σ1s

′
3, p

′
1), and H = σ1H3 where [[let x =

D in P else Q]]ρ3s3s
′
3H3 has been called and (ρ(D)1, ρ(D)2) ⇓

′ ((p1, p
′
1), σ1).

Let ρ2, s2, s
′
2, H2 such that Σ ` ρ2 = σρ, Σ ` s2 = σs, Σ ` s′2 = σs′,

Σ ` H2 ∼ σH , and nf ′S,Σ({ρ2, s2, s
′
2, H2}).

Then ρ2 = ρ4[x 7→ (p4, p
′
4)], s2 = (s4, p4), s′2 = (s′4, p

′
4), H2 = H4 with

Σ ` ρ4 = σσ1ρ3, Σ ` s4 = σσ1s3, Σ ` s4 = σσ1s
′
3, Σ ` H4 ∼ σσ1H3,

Σ ` p4 = σp1, Σ ` p′4 = σp′1, and nf ′S,Σ({ρ4, s4, s
′
4, H4, p4, p

′
4}).

By induction hypothesis, there exist σ′
0, ρ5, s5, s

′
5, H5 such that ρ4 = σ′

0ρ5, s4 =
σ′

0s5, s′4 = σ′
0s

′
4, H4 ∼ σ′

0H5, and [[let x = D in P else Q]]ρ5s5s
′
5H5 has been

called.

By Lemma 26, there exist σ2, p2, p
′
2, and σ3 such that (ρ5(D)1, ρ5(D)2) ⇓′

((p2, p
′
2), σ2), σ′

0 = σ3σ2 except on fresh variables introduced in the computa-
tion of (ρ5(D)1, ρ5(D)2) ⇓

′ ((p2, p
′
2), σ2), p4 = σ3p2, and p′4 = σ3p

′
2.

Moreover, by definition of [[let x = D in P else Q]], [[P ]]((σ2ρ5)[x 7→ (p2, p
′
2)])

(σ2s5, p2)(σ2s
′
5, p

′
2)(σ2H5) has been called, so we obtain the result by letting

ρ1 = (σ2ρ5)[x 7→ (p2, p
′
2)], s1 = (σ2s5, p2), s′1 = (σ2s

′
5, p

′
2), H1 = σ2H5: we

have ρ2 = ρ4[x 7→ (p4, p
′
4)] = (σ′

0ρ5)[x 7→ (σ3p2, σ3p
′
2)] = σ3((σ2ρ5)[x 7→

(p2, p
′
2)]) = σ3ρ1, and similarly for s2, s′2, and H2.

Subprocess Q: Assume [[Q]]ρss′H is called. Then H = H3∧ρ(fails(fst(D)))1∧
ρ(fails(snd(D)))2 and [[let x = D in P else Q]]ρss′H3 has been called. Let
ρ2, s2, s

′
2, H2 such that Σ ` ρ2 = σρ, Σ ` s2 = σs, Σ ` s′2 = σs′, Σ ` H2 ∼

σH , and nf ′S,Σ({ρ2, s2, s
′
2, H2}).

Then H2 = H4 ∧ H4nounif where H4nounif consists of nounif facts, Σ `
H4nounif ∼ σρ(fails(fst(D)))1 ∧ σρ(fails(snd(D)))2, and Σ ` H4 ∼ σH3.

By induction hypothesis, there exist σ1, ρ1, s1, s
′
1, H5 such that ρ2 = σ1ρ1, s2 =

σ1s1, s′2 = σ1s
′
1, H4 ∼ σ1H5, and [[let x = D in P else Q]]ρ1s1s

′
1H5 has been

called.

Then [[Q]]ρ1s1s
′
1(H5∧ρ1(fails(fst(D)))1∧ρ1(fails(snd(D)))2) has been called,

which yields the desired result, knowing that H2 = H4 ∧ H4nounif ∼ σ1H5 ∧
σ1ρ1(fails(fst(D)))1 ∧ σ1ρ1(fails(snd(D)))2, since Σ ` σ1ρ1 = ρ2 = σρ. 2

Lemma 28 Let P0 be a closed, unevaluated process. For all clauses H → C ∈ RP0
,

for all closed substitutions σ, for all H2 → C2 such that Σ ` H2 → C2 ∼ σ(H → C)
and nf ′S,Σ({H2, C2}), there exist a closed substitution σ1 and a clause H1 → C1 ∈
RP0

such that H2 ∼ σ1H1 and C2 = σ1C1.
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Proof The clauses of [[P0]]ρ0∅∅∅ are generated from the following cases:

• H → C = H → input′(ρ(M)1, ρ(M)2) where [[M(x).P ]]ρss′H has been
called during the generation of [[P0]]ρ0∅∅∅. Since Σ ` H2 → C2 ∼ σ(H → C)
and nf ′S,Σ({H2, C2}), we have Σ ` H2 ∼ σH , C2 = input′(p2, p

′
2), Σ ` p2 =

σρ(M)1, and Σ ` p′2 = σρ(M)2.

Since P0 is unevaluated, M is a variable y or diff[a, a] for some name a. Let
u = y in the first case and u = a in the second case. We have u ∈ dom(ρ). We
define ρ2 by ρ2(u) = diff[p2, p

′
2] and extend ρ2 to dom(ρ) in such a way that

Σ ` ρ2 = σρ and nf ′S,Σ({H2, ρ2}) by Property S2. We also define s2 and s′2 so
that Σ ` s2 = σs, Σ ` s′2 = σs′, and nf ′S,Σ({H2, ρ2, s2, s

′
2}) by Property S2.

By Lemma 27, there exist σ1, ρ1, s1, s
′
1, H1 such that ρ2 = σ1ρ1, s2 = σ1s1,

s′2 = σ1s
′
1, H2 ∼ σ1H1, and [[M(x).P ]]ρ1s1s

′
1H1 has been called.

Then H1 → input′(ρ1(M)1, ρ1(M)2) is in [[P0]]ρ0∅∅∅, H2 ∼ σ1H1, C2 =
input′(p2, p

′
2) = input′(ρ2(M)1, ρ2(M)2) = σ1input′(ρ1(M)1, ρ1(M)2).

• H → C = H → msg′(ρ(M)1, ρ(N)1, ρ(M)2, ρ(N)2) where [[M〈N〉.P ]]ρss′H
has been called. This case is similar to the previous one. (The terms M and N
are variables or diff[a, a] for some name a.)

• H → C = σ′H ′ ∧ σ′ρ(fails(snd(D)))2 → bad where [[let x = D in P
else Q]]ρss′H ′ has been called and ρ(D)1 ⇓′ (p′, σ′). Since Σ ` H2 → C2 ∼
σ(H → C) and nf ′S,Σ({H2, C2}), we have H2 = H3 ∧ H3nounif where Σ `
H3 ∼ σσ′H ′ and H3nounif consists of nounif facts such that Σ ` H3nounif ∼
σσ′ρ(fails(snd(D)))2. By Property S2, there exist ρ3, s3, s

′
3 such that Σ ` ρ3 =

σσ′ρ, Σ ` s3 = σσ′s, Σ ` s′3 = σσ′s′, and nf ′S,Σ({ρ3, s3, s
′
3, H3}).

By Lemma 27, there exist σ1, ρ1, s1, s
′
1, H1 such that ρ3 = σ1ρ1, s3 = σ1s1,

s′3 = σ1s
′
1, H3 ∼ σ1H1, and [[let x = D in P else Q]]ρ1s1s

′
1H1 has been

called.

By Property S2, we can choose p such that Σ ` p = σp′ and nfS,Σ({p, σ1ρ1}).
By Lemma 26, there exist σ′

1, p′1, and σ′′
1 such that ρ1(D)1 ⇓′ (p′1, σ

′
1) and

σ1 = σ′′
1σ′

1 except on fresh variables introduced in the computation of ρ1(D)1 ⇓′

(p′1, σ
′
1). Then σ′

1H1∧σ′
1ρ1(fails(snd(D)))2 → bad is in [[P0]]ρ0∅∅∅. Moreover

σ′′
1 (σ′

1H1 ∧ σ′
1ρ1(fails(snd(D)))2) = σ1H1 ∧ σ1ρ1(fails(snd(D)))2 ∼ H3 ∧

H3nounif ∼ H2, since Σ ` σ1ρ1 = ρ3 = σσ′ρ, and σ′′
1bad = bad = C, so we

have the desired result.

• H → C = σ′H ′ ∧ σ′ρ(fails(fst(D)))1 → bad where [[let x = D in P else

Q]]ρss′H ′ has been called and ρ(D)2 ⇓′ (p′, σ′). This case is symmetric from
the previous one.

For the other clauses:

• For Clause (Rinit), C2 = C, H2 = ∅, so we have the result by taking H1 →
C1 = H → C.
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• For Clauses (Rn), (Rl), (Rs), (Ri), (Rcom), and (Rcom′), H2 = σ′H and C2 =
σ′C where for all x ∈ fv(H → C), Σ ` σ′x = σx, and nfS,Σ({σ′x | x ∈
fv(H → C)}). (Indeed, the function symbols in H,C do not appear in equations
of Σ.) So we obtain the result by taking H1 → C1 = H → C and σ1 = σ′.

• For Clause (Rf), H = att′(M1, N1) ∧ . . . ∧ att′(Mn, Nn), C = att′(M,N),
h(M1, . . . ,Mn) → M in defΣ′(h), h(N1, . . . , Nn) → N in defΣ′(h), H2 =
att′(M ′′

1 , N ′′
1 ) ∧ . . . ∧ att′(M ′′

n , N ′′
n ), C2 = att′(M ′′, N ′′) with Σ ` M ′′ =

σM , Σ ` N ′′ = σN , Σ ` M ′′
i = σMi and Σ ` N ′′

i = σNi for all i ∈
{1, . . . , n}, and nfS,Σ({M ′′, N ′′,M ′′

1 , . . . ,M ′′
n , N ′′

1 , . . . , N ′′
n}). By Lemma 24,

there exist σ1 and h(M ′
1, . . . ,M

′
n) → M ′ in defΣ′(h) such that M ′′ = σ1M

′

and for all i ∈ {1, . . . , n}, M ′′
i = σ1M

′
i . By Lemma 24 again, there exist

σ1 and h(N ′
1, . . . , N

′
n) → N ′ in defΣ′(h) such that N ′′ = σ1N

′ and for all
i ∈ {1, . . . , n}, N ′′

i = σ1N
′
i . (We can use the same substitution σ1 since the

first and second arguments of the predicate att′ do not share variables.) Hence
σ1att

′(M ′
i , N

′
i) = att′(M ′′

i , N ′′
i ) for all i ∈ {1, . . . , n} and σ1att

′(M ′, N ′) =
att′(M ′′, N ′′). We take H1 → C1 = att′(M ′

1, N
′
1) ∧ . . . ∧ att′(M ′

n, N ′
n) →

att′(M ′, N ′), which yields the desired result.

• For Clause (Rt), we have C2 = C = bad, H = Hnounif ∧ att′(M1, x1) ∧
. . . ∧ att′(Mn, xn), H2 = H2nounif ∧ att′(M ′′

1 , N ′′
1 ) ∧ . . . ∧ att′(M ′′

n , N ′′
n )

where Hnounif and H2nounif consist of nounif facts, Σ ` H2nounif = σHnounif ,
g(M1, . . . ,Mn) → M in defΣ′(g), Σ ` M ′′

i = σMi and Σ ` N ′′
i = σxi for

all i ∈ {1, . . . , n}, and nfS,Σ({M ′′
1 , . . . ,M ′′

n , N ′′
1 , . . . , N ′′

n}). By Lemma 24,
there exist σ1 and g(M ′

1, . . . ,M
′
n) → M ′ in defΣ′(g) such that M ′′ = σ1M

′

and for all i ∈ {1, . . . , n}, M ′′
i = σ1M

′
i . We extend σ1 by defining for all

i ∈ {1, . . . , n}, σ1xi = N ′′
i . Hence σ1att

′(M ′
i , xi) = att′(M ′′

i , N ′′
i ) for all

i ∈ {1, . . . , n} and Σ ` H2nounif = σHnounif = σ1Hnounif since for all i ∈
{1, . . . , n}, Σ ` σ1xi = N ′′

i = σxi and fv(Hnounif) = {x1, . . . , xn}. We take
H1 → C1 = Hnounif ∧ att′(M ′

1, x1) ∧ . . . ∧ att′(M ′
n, xn) → bad which yields

the result.

The case of Clause (Rt′) is symmetric. 2

Lemma 29 Assume P0 is a closed, unevaluated process. If F is derivable from RP0
,

Σ ` F ′′ ∼ F , and nf ′S,Σ(F ∪ {F ′′}), then F ′′ is derivable from RP0
by a derivation

D such that nf ′S,Σ(F ∪ {D}).

Proof The proof is by induction on the derivation of F . Assume that F is derived
from F1, . . . , Fn, using a clause R ∈ RP0

: there exists a closed substitution σ such
that σR = F1 ∧ . . .∧Fn → F . Let F ′′ such that Σ ` F ′′ ∼ F and nf ′S,Σ(F ∪ {F ′′}).
By Property S2, there exist F ′′

1 , . . . , F ′′
n such that Σ ` F ′′

i ∼ Fi for all i ∈ {1, . . . , n}
and nf ′S,Σ(F ∪{F ′′, F ′′

1 , . . . , F ′′
n }). By Lemma 28, there exist a closed substitution σ1

and a clause R′ = F ′
1 ∧ . . . ∧ F ′

n → F ′ ∈ RP0
such that F ′′ = σ1F

′ and F ′′
i ∼ σ1F

′
i

for all i ∈ {1, . . . , n}. So F ′′ is derivable from F ′′
1 , . . . , F ′′

n by R′. Furthermore, for
all i ∈ {1, . . . , n}, Σ ` F ′′

i ∼ Fi, nf ′S,Σ(F ∪ {F ′′
1 , . . . , F ′′

n , F ′′}), and Fi is derivable
from RP0

. So by induction hypothesis, F ′′
i is derivable from RP0

, by a derivation
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Di such that nfS,Σ(F ∪ {D1, . . . ,Di, F
′′
i+1, . . . , F

′′
n , F ′′}). (We apply the induction

hypothesis with F ∪ {D1, . . . ,Di−1, F
′′
i+1, . . . , F

′′
n , F ′′} instead of F ∪ {F ′′}.) Then

F ′′ is derivable from RP0
by a derivation D built from D1, . . . ,Dn and R′, such that

nf ′S,Σ(F ∪ {D}). 2

Lemma 3 is a particular case of Lemma 29, taking F = F ′′ = bad.

D Proof of Theorem 3

The following lemma is useful for establishing the soundness of the translation of
“there exists no p such that σD ⇓Σ p” into σfails(D). This translation appears when
we show the soundness of clauses for term evaluations.

Lemma 30 If σfails(D) is false then there exists a pattern p such that σD ⇓Σ p.

Proof By definition of fails, there exist a pattern p and σ′ such that D ⇓′ (p, σ′) and
σnounif(D,GVar(σ′D)) is false. By definition of nounif , there exists a closed σ′′

such that Σ ` σD = σ′′σ′D. By Lemma 25, since D ⇓′ (p, σ′), there exists p′ such
that σ′′σ′D ⇓Σ p′ and Σ ` p′ = σ′′p. By a variant of Lemma 18 for patterns instead of
terms, Σ ` σD = σ′′σ′D implies σD ⇓Σ p′′ for some p′′ such that Σ ` p′′ = p′. 2

Proof (of Theorem 3) We exploit the theory developed in [3, 16] to prove the hy-
potheses of Lemma 2. This theory uses a type system to express the invariant that
corresponds to the soundness of the clauses, and a subject reduction theorem to show
that the invariant is indeed preserved. Here, types range over pairs of closed patterns,
after adding constant session identifiers λ to the grammar of patterns.

We first define instrumented biprocesses in which a pattern is associated with each
name. The syntax of instrumented biprocesses is the same as the syntax of biprocesses
except that the replication is replaced with !iP where i is a variable session identi-
fier and the restriction is replaced with (νa : a0[M1, . . . ,Mn]) where a0 is a function
symbol and M1, . . . ,Mn are terms or (constant or variable) session identifiers. In Sec-
tion 6.3 and below, we reuse the name a as function symbol a0. In contrast with a and
any names occurring in M1, . . . ,Mn, however, the function symbol a0 is not subject
to renaming, so we may have a 6= a0 after an α-conversion on a.

To every closed biprocess P with pairwise distinct bound variables, we associate
the instrumented biprocess instr(P ) obtained by adding a distinct session identifier i to
each replication in P and by labelling each restriction (νa) of P with (νa : a[x1, . . . ,
xn]) where x1, . . . , xn are the variables and session identifiers bound above (νa) in
instr(P ). Conversely, we let delete(P ) be the biprocess obtained by erasing instru-
mentation from any instrumented biprocess P .

We define the semantics of instrumented biprocesses using configurations Λ;P
where Λ is a countable set of constant session identifiers and P is an instrumented
biprocess. Intuitively, Λ is the set of session identifiers not yet used in the reduction
of P . The rule (Red Repl) is defined as follows for instrumented biprocesses:

Λ; !iP → Λ − {λ}; !iP | P{λ/i} if λ ∈ Λ
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This rule chooses a fresh session identifier λ in Λ, removes it from Λ, and uses it for the
new copy of P . The other rules of Figures 2 and 3 that define reduction and structural
congruence are lifted from P → Q to Λ;P → Λ;Q and from P ≡ Q to Λ;P ≡ Λ;Q.

By construction, instrumented biprocesses include the variables that were collected
by s and s′ in the definition of [[ ]]ρss′H of Section 6.3. Hence, the clauses [[P ]]ρ0∅∅∅
can be computed from instr(P ) as follows: [[P ]]ρ0∅∅∅ = [[instr(P )]]ρ0∅ where

[[0]]ρH = ∅

[[!iP ]]ρH = [[P ]](ρ[i 7→ (i, i)])H

[[P | Q]]ρH = [[P ]]ρH ∪ [[Q]]ρH

[[(νa : a[x1, . . . , xn])P ]]ρH =

[[P ]](ρ[a 7→ (a[ρ(x1)1, . . . , ρ(xn)1], a[ρ(x1)2, . . . , ρ(xn)2])])H

[[M(x).P ]]ρH = [[P ]](ρ[x 7→ (x′, x′′)])(H ∧ msg′(ρ(M)1, x
′, ρ(M)2, x

′′))

∪ {H → input′(ρ(M)1, ρ(M)2)}

where x′ and x′′ are fresh variables

[[M〈N〉.P ]]ρH = [[P ]]ρH ∪ {H → msg′(ρ(M)1, ρ(N)1, ρ(M)2, ρ(N)2)}

[[let x = D in P else Q]]ρH =
⋃

{[[P ]]((σρ)[x 7→ (p, p′)])(σH) | (ρ(D)1, ρ(D)2) ⇓
′ ((p, p′), σ)}

∪ [[Q]]ρ(H ∧ ρ(fails(fst(D)))1 ∧ ρ(fails(snd(D)))2)

∪ {σH ∧ σρ(fails(snd(D)))2 → bad | ρ(D)1 ⇓′ (p, σ)}

∪ {σH ∧ σρ(fails(fst(D)))1 → bad | ρ(D)2 ⇓′ (p′, σ)}

Let C be a plain evaluation context. For each reduction unevaluated(C[P0])
→∗

Σ′,Σ≡ P , there is a reduction Λ0; instr(unevaluated(C[P0])) →∗
Σ′,Σ≡ Λ;P ′ such

that delete(P ′) = P (and conversely). Let P ′
0 = instr(unevaluated(P0)). There ex-

ists an unevaluated evaluation context C ′ such that diff occurs only in terms diff[a, a]
for some names a in C ′ and instr(unevaluated(C[P0])) = C ′[P ′

0].
Let RC′,P0

be the set of clauses obtained by adding to RP0
the clauses

att′(a[x1, . . . , xn], a[x1, . . . , xn]) (Rn′)

such that either (νa : a[x′
1, . . . , x

′
n]) occurs in C ′ or n = 0, a ∈ fn(C ′), and a /∈

fn(P ′
0). The fact bad is derivable from RC′,P0

if and only if bad is derivable from RP0
,

since we can replace all patterns a[. . .] of names created by the context C ′ with pat-
terns b[i], as long as different names have different images, so we can replace the
Clauses (Rn′) with Clause (Rn). Hence, the definition of RP0

is sufficient.
Next, we define a type system, similar to that of [3, Section 7]. Here, the types

are pairs of closed patterns. The type environment E is a function from variables and
names to types. It is extended to terms as a substitution, so that a term M has type
E(M). The typing judgment E ` P says that the instrumented biprocess P is well-
typed in environment E. This judgment is formally defined in Figure 5, where FC′,P0

is the set of closed facts derivable from RC′,P0
.
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input′(E(M)1, E(M)2) ∈ FC′,P0

∀p1, p2 such that msg′(E(M)1, p1, E(M)2, p2) ∈ FC′,P0
, E[x 7→ (p1, p2)] ` P

E ` M(x).P
(Input)

msg′(E(M)1, E(N)1, E(M)2, E(N)2) ∈ FC′,P0
E ` P

E ` M〈N〉.P
(Output)

E ` 0
(Nil)

E ` P E ` Q

E ` P | Q
(Parallel)

∀λ,E[i 7→ (λ, λ)] ` P

E `!iP
(Replication)

E[a 7→ (a0[E(M1)1, . . . , E(Mn)1], a0[E(M1)2, . . . , E(Mn)2]) ] ` P

E ` (νa : a0[M1, . . . ,Mn])P
(Restriction)

∀p1, p2 such that E(D)1 ⇓Σ′ p1 and E(D)2 ⇓Σ′ p2, E[x 7→ (p1, p2)] ` P
if 6 ∃p1, E(D)1 ⇓Σ p1 and 6 ∃p2, E(D)2 ⇓Σ p2, then E ` Q

if ∃p1, E(D)1 ⇓Σ′ p1 and 6 ∃p2, E(D)2 ⇓Σ p2, then bad ∈ FC′,P0

if 6 ∃p1, E(D)1 ⇓Σ p1 and ∃p2, E(D)2 ⇓Σ′ p2, then bad ∈ FC′,P0

E ` let x = D in P else Q
(Term evaluation)

Figure 5: Type rules

When M1, . . . ,Mn is a sequence of terms and (variable or constant) session iden-
tifiers, as in labels of restrictions, we define last(M1, . . . ,Mn) as the last Mi that is
a session identifier, or ∅ when no Mi is a session identifier. Let us define the multiset
Label(P ) as follows: Label((νa : a0[M1, . . . ,Mn])P ) = {(a0, last(M1, . . . ,Mn))}∪
Label(P ), Label(!iP ) = ∅, and in all other cases, Label(P ) is the union of the
Label(P ′) for all immediate subprocesses P ′ of P . When E maps names to closed
patterns, let Label(E) = {(a0, last(M1, . . . ,Mn)) | (a 7→ a0[M1, . . . ,Mn] ∈ E}.
Let Label(Λ) = {(a, λ) | λ ∈ Λ}. We say that E ` Λ;P is well-labelled when the
multisets Label(E1) ∪ Label(Λ) ∪ Label(P ) and Label(E2) ∪ Label(Λ) ∪ Label(P )
contain no duplicates, where E1 and E2 are the first and second components of E.
We say that E ` Λ;P when E ` Λ;P is well-labelled and E ` P . Showing that
Label(E1) and Label(E2) contain no duplicates guarantees that different terms have
different types. More precisely, if E maps names to closed patterns a[. . .], E is ex-
tended to terms as a substitution, and Label(E) contains no duplicates, then we have
the following properties:
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E1. E is an injection (if E(M) = E(N) then M = N ) and also an injection modulo
Σ (if Σ ` E(M) = E(N) then Σ ` M = N ).

E2. Let N be a term not containing names; if E(M ′) is an instance of N , then M ′ is
an instance of N ; if E(M ′) is an instance of N modulo Σ, then M ′ is an instance
of N modulo Σ.

E3. If D ⇓Σ′ M , then E(D)⇓Σ′ E(M). (This is proved by induction on D.)

E4. If Σ ` D′ = E(D) and D′ ⇓Σ p′ then there exists M such that Σ ` p′ = E(M)
and D ⇓Σ M . (This is proved by induction on D, using E2.)

Let E0 = {a 7→ (a[ ], a[ ]) | a ∈ fn(C ′[P ′
0])}.

1. Typability of the adversary: Let P ′ be a subprocess of C ′. Let E be an envi-
ronment such that for all a ∈ fn(P ′), att′(E(a), E(a)) ∈ FC′,P0

and for all
x ∈ fv(P ′), att′(E(x), E(x)) ∈ FC′,P0

. We show that E ` P ′ by induction on
P ′, similarly to [3, Lemma 5.1.4].

We detail the case of term evaluations, since it significantly differs from that
in [3]. In order to show the desired property in this case, it suffices to show
that if for all a ∈ fn(D), att′(E(a), E(a)) ∈ FC′,P0

and for all x ∈ fv(D),
att′(E(x), E(x)) ∈ FC′,P0

, then we have the two properties:

(a) if E(D)1 ⇓Σ′ p1 and E(D)2 ⇓Σ′ p2, then att′(p1, p2) ∈ FC′,P0
;

(b) if E(D)1 ⇓Σ′ p1 and 6 ∃p2, E(D)2 ⇓Σ p2, then bad ∈ FC′,P0
; symmetri-

cally, if E(D)2 ⇓Σ′ p2 and 6 ∃p1, E(D)1 ⇓Σ p1, then bad ∈ FC′,P0
.

The proof is by induction on D.

• Case D = diff[a, a]: We have E(D)1 = E(a)1 ⇓Σ′ E(a)1 and E(D)2 =
E(a)2 ⇓Σ′ E(a)2, and by hypothesis att′(E(a)1, E(a)2) ∈ FC′,P0

, so
Property (a) holds. We also have E(D)1 = E(a)1 ⇓Σ E(a)1 and E(D)2 =
E(a)2 ⇓Σ E(a)2, so Property (b) holds.

• Case D = x: This case is similar to that for D = diff[a, a].

• Case D = eval h(D1, . . . , Dn): Property (a) follows from the induction
hypothesis and Clause (Rf). Next, we prove the first part of Property (b).
The second part of Property (b) follows by symmetry.

Since E(D)1 ⇓Σ′ p1, there exist h(N1, . . . , Nn) → N in defΣ′(h), p1,
p1,1, . . . , p1,n, and σ such that E(Di)1 ⇓Σ′ p1,i for all i ∈ {1, . . . , n},
p1 = σN , and p1,i = σNi for all i ∈ {1, . . . , n}. Since there exists no p2

such that E(D)2 ⇓Σ p2, either for some i ∈ {1, . . . , n} there exists no p2,i

such that E(Di)2 ⇓Σ p2,i (and bad ∈ FC′,P0
by induction hypothesis),

or for all i ∈ {1, . . . , n} there exists p2,i such that E(Di)2 ⇓Σ p2,i, and
there exist no h(N ′

1, . . . , N
′
n) → N ′ in defΣ(h) and σ such that for all

i ∈ {1, . . . , n}, Σ ` p2,i = σN ′
i . Hence, h must be a destructor.

By Property S2, there exists an environment E ′ such that Σ ` E′(a) =
E(a) for all a ∈ fn(D), Σ ` E′(x) = E(x) for all x ∈ fv(D), and
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nfS,Σ(E′). By Lemma 29, att′(E′(a)1, E
′(a)2) ∈ FC′,P0

for all a ∈
fn(D) and att′(E′(x)1, E

′(x)2) ∈ FC′,P0
for all x ∈ fv(D). We have

nfS,Σ(E′(Di)) and Σ ` E′(Di)2 = E(Di)2. By Property S2, there ex-
ist p′2,1, . . . , p′2,n such that Σ ` p′2,i = p2,i for all i ∈ {1, . . . , n} and
nfS,Σ(E′, p′2,1, . . . , p

′
2,n). By a variant of Lemma 14 for patterns instead

of terms, E′(Di)2 ⇓Σ′ p′2,i for all i ∈ {1, . . . , n}.
By a variant of Lemma 18 for patterns instead of terms, E ′(Di)1 ⇓Σ p′1,i

for some p′1,i such that Σ ` p′1,i = p1,i. By Property S2, there ex-
ist p′′1,1, . . . , p

′′
1,n, p′′1 such that Σ ` p′′1,i = p′1,i for all i ∈ {1, . . . , n},

Σ ` p′′1 = p1, and nfS,Σ(E′, p′2,1, . . . , p
′
2,n, p′′1,1, . . . , p

′′
1,n, p′′1). By a

variant of Lemma 14 for patterns instead of terms, E ′(Di)1 ⇓Σ′ p′′1,i for
all i ∈ {1, . . . , n}. By induction hypothesis, Property (a), we obtain
att′(p′′1,i, p

′
2,i) ∈ FC′,P0

for all i ∈ {1, . . . , n}.
Since Σ ` p′2,i = p2,i, there exist no σ and h(N ′

1, . . . , N
′
n) → N ′ in

defΣ(h) such that for all i ∈ {1, . . . , n}, Σ ` p′2,i = σN ′
i . By Lemma 16,

there exist no σ and h(N ′
1, . . . , N

′
n) → N ′ in defΣ′(h) such that for all

i ∈ {1, . . . , n}, Σ ` p′2,i = σN ′
i , that is, we have

∧

h(N ′

1
,...,N ′

n)→N ′ in def
Σ′ (h)

nounif((p′2,1, . . . , p
′
2,n),GVar(N ′

1, . . . , N
′
n))

Since Σ ` p′′1,i = p1,i, Σ ` p′′1 = p1, and nfS,Σ(p′′1,1, . . . , p
′′
1,n, p′′1), by

Lemma 16 and a variant of Lemma 13 for patterns instead of terms, there
exist h(N1, . . . , Nn) → N is defΣ′(h) and Σ such that p′′1,i = σNi for all
i ∈ {1, . . . , n} and p′′1 = σN . Hence, by Clause (Rt), bad ∈ FC′,P0

.

2. Typability of P ′
0: We prove by induction on the process P , subprocess of P ′

0, that,
if (a) ρ binds all free names and variables of P , (b) σ is a closed substitution, (c)
RC′,P0

⊇ [[P ]]ρH , and (d) σH can be derived from RC′,P0
, then σρ ` P .

Again, we detail the case of term evaluations. We suppose that ρ binds all free
names and variables of let x = D in P else Q, σ is a closed substitution,
RC′,P0

⊇ [[let x = D in P else Q]]ρH , and σH is derivable from RC′,P0
. We

show that σρ ` let x = D in P else Q. To apply the type rule (Term evaluation),
it suffices to show that:

• For all p1, p2 such that σρ(D)1 ⇓Σ′ p1 and σρ(D)2 ⇓Σ′ p2, we have σρ[x
7→ (p1, p2)] ` P .
By a variant of Lemma 11 for patterns instead of terms, there exist p′

1,
p′2, σ′, and σ′′ such that (ρ(D)1, ρ(D)2) ⇓′ ((p′1, p

′
2), σ

′), p1 = σ′′p′1,
p2 = σ′′p′2, and σ = σ′′σ′ except on the fresh variables introduced in the
computation of (ρ(D)1, ρ(D)2) ⇓

′ ((p′1, p
′
2), σ

′).
Hence σ′′σ′H = σH can be derived from RC′,P0

, and [[P ]]((σ′ρ)[x 7→
(p′1, p

′
2)])(σ

′H) ⊆ [[let x = D in P else Q]]ρH ⊆ RC′,P0
so, by induction

hypothesis, σ′′(σ′ρ[x 7→ (p′1, p
′
2)]) ` P , that is, σρ[x 7→ (p1, p2)] ` P .

• If there exists no p1 such that σρ(D)1 ⇓Σ p1 and there exists no p2 such
that σρ(D)2 ⇓Σ p2, then σρ ` Q.
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By Lemma 30, σρ(fails(fst(D)))1 and σρ(fails(snd(D)))2 are true, so
σ(H∧ρ(fails(fst(D)))1∧ρ(fails(snd(D)))2) can be derived from RC′,P0

.
Moreover [[Q]]ρ(H ∧ ρ(fails(fst(D)))1 ∧ ρ(fails(snd(D)))2) ⊆ [[let x =
D in P else Q]]ρH ⊆ RC′,P0

so, by induction hypothesis, σρ ` Q.

• If there exists p1 such that σρ(D)1 ⇓Σ′ p1 and there exists no p2 such that
σρ(D)2 ⇓Σ p2, then bad ∈ FC′,P0

.

By a variant of Lemma 11 for patterns instead of terms, there exist p′
1,

σ′, and σ′′ such that ρ(D)1 ⇓′ (p′1, σ
′), p1 = σ′′p′1, and σ = σ′′σ′

except on the fresh variables introduced in the computation of ρ(D)1 ⇓′

(p′1, σ
′). There exists no p2 such that σ′′σ′ρ(D)2 ⇓Σ p2, so by Lemma 30,

σ′′σ′ρ(fails(snd(D)))2 holds, hence σ′′(σ′H ∧ σ′ρ(fails(snd(D)))2) can
be derived from RC′,P0

. Since σ′H ∧ σ′ρ(fails(snd(D)))2 → bad ∈
[[let x = D in P else Q]]ρH ⊆ RC′,P0

, bad ∈ FC′,P0
.

• If there exists no p1 such that σρ(D)1 ⇓Σ p1 and there exists p2 such that
σρ(D)2 ⇓Σ′ p2, then bad ∈ FC′,P0

. This property follows from the one
above by symmetry.

By definition, RC′,P0
⊇ [[P ′

0]]ρ0∅, where ρ0 = {a 7→ (a[ ], a[ ]) | a ∈ fn(P ′
0)}.

Taking P = P ′
0, we obtain E ` P ′

0 with E = σρ0 = {a 7→ (a[ ], a[ ]) | a ∈
fn(P ′

0)}. (This result is similar to [3, Lemma 7.2.2].)

3. Properties of C ′[P ′
0]: We show that E0 ` Λ0;C

′[P ′
0]. In order to prove this

result, we show that E0 ` C ′[P ′
0] by induction on C ′.

When C ′ = [ ], the result follows from Property 2. When C ′ = (νa : a[ ])C ′′,
the result follows by induction hypothesis and the type rule (Restriction). When
C ′ = C ′′ | Q, the result follows from Property 1 and the type rule (Parallel).

4. Substitution lemma: Let E′ = E[x 7→ (E(M)1, E(M)2)]. We show by induc-
tion on M ′ that E(M ′{M/x}) = E′(M ′). We show by induction on P that, if
E′ ` P , then E ` P{M/x}. This is similar to [3, Lemma 5.1.1].

5. Subject congruence: If E ` Λ;P and P ≡ P ′, then E ` Λ;P ′. We prove by
induction on the derivation of P ≡ P ′ that if E ` P and P ≡ P ′, then E ` P ′

and Label(P ′) = Label(P ), similarly to [3, Lemma 5.1.2].

6. Subject reduction: If E ` Λ;P and Λ;P → Λ′;P ′, then E ` Λ′, P ′. We prove
by induction on the derivation of Λ;P → Λ′;P ′ that if E ` Λ;P and Λ;P →
Λ′;P ′, then E ` Λ′, P ′ and Label(Λ′) ∪ Label(P ′) ⊆ Label(Λ) ∪ Label(P ),
similarly to [3, Lemma 5.1.3].

7. Proof of the second hypothesis of Lemma 2: Assume that

unevaluated(C[P0]) →∗
Σ′,Σ≡ C1[let y = D in Q else Q′]

and fst(D)⇓Σ′ M1 for some M1. Then Λ0;C
′[P ′

0] →∗
Σ′,Σ≡ Λ;C ′

1[let y =
D in Q1 else Q′

1] where delete(C ′
1[let y = D in Q1 else Q′

1]) = C1[let y =
D in Q else Q′]. We have E0 ` Λ0;C

′[P ′
0], so by subject reduction and subject
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congruence, E0 ` Λ;C ′
1[let y = D in Q1 else Q′

1]. Since E0 ` C ′
1[let y =

D in Q1 else Q′
1] has been derived by type rules (Restriction) and (Parallel),

there exists an environment E such that E ` let y = D in Q1 else Q′
1 and

since Label((E0)1) ∪ Label(Λ) ∪ Label(C ′
1[let y = D in Q1 else Q′

1]) and
Label((E0)2) ∪ Label(Λ) ∪ Label(C ′

1[let y = D in Q1 else Q′
1]) contain no

duplicates, Label(E1) and Label(E2) contain no duplicates.

Since fst(D)⇓Σ′ M1, by Property E3, E(D)1 ⇓Σ′ E(M1)1. Since E ` let y =
D in Q1 else Q′

1 has been derived by type rule (Term evaluation) and bad /∈
FC′,P0

, there exists p2 such that E(D)2 ⇓Σ p2. So by Property E4, there ex-
ists M2 such that snd(D)⇓Σ M2, which establishes the second hypothesis of
Lemma 2.

8. Proof of the first hypothesis of Lemma 2: Assume that

unevaluated(C[P0]) →∗
Σ′,Σ≡ C1[N〈M〉.Q | N ′(x).R]

and fst(N) = fst(N ′). As above, there exists an environment E such that E `
N〈M〉.Q′ | N ′(x).R′ and E1 and E2 satisfy Properties E1, E2, E3, and E4.

Since E ` N〈M〉.Q′ | N ′(x).R′ has been derived by type rules (Parallel), (Out-
put), and (Input), we have msg′(E(N)1, E(M)1, E(N)2, E(M)2) ∈ FC′,P0

and input′(E(N ′)1, E(N ′)2) ∈ FC′,P0
. Since fst(N) = fst(N ′), E(N)1 =

E(N ′)1. Since bad is not derivable from RC′,P0
, nounif(E(N)2, E(N ′)2)

is false—otherwise bad would be derivable by (Rcom)—so, by definition of
nounif , Σ ` E(N)2 = E(N ′)2. By Property E1, E2 is injective modulo Σ and
we obtain Σ ` snd(N ′) = snd(N).

The symmetric hypotheses of Lemma 2 follow by symmetry.

To conclude our proof of Theorem 3, we apply Lemma 2 and Corollary 1. 2

E Proof of Theorem 4

E.1 Unification modulo the equational theory

We use the standard convention that, when computing a most general unifier σu of
Mi, Ni for i ∈ {1, . . . , n}, we always arrange that dom(σu) ∩ fv(im(σu)) = ∅ and
dom(σu) ∪ fv(σuM1, σuN1, . . . , σuMn, σuNn) ⊆ ∪i(fv(Mi) ∪ fv(Ni)). (We recall
that dom(σ) = {x | x 6= σx}.) Since dom(σu) ∩ fv(im(σu)) = ∅, σu is idempotent.

If σ is a most general unifier of Mi, Ni for i ∈ {1, . . . , n} and σ′ is a most general
unifier of σM ′

i , σN ′
i for i ∈ {1, . . . , n′} then σ′σ is a most general unifier of Mi, Ni

for i ∈ {1, . . . , n} and M ′
i , N

′
i for i ∈ {1, . . . , n′}.

Lemma 31 If σD ⇓′ (M ′, σ′) and σ is a most general unifier, then σ′σ is also a most
general unifier, and there exists M ′′ such that M ′ = σ′σM ′′.

Proof The proof is by mutual induction following the definition of ⇓′. All cases are
easy. 2
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Lemma 32 We have Σ ` σM = σM ′ if and only if there exist N , N ′, σ′, and σu such
that addeval(M,M ′) ⇓′ ((N,N ′), σ′), σu is the most general unifier of N and N ′,
and for all x ∈ fv(M,M ′), Σ ` σx = σσuσ′x.

Proof Assume Σ ` σM = σM ′. By Property S2, there exist M ′′ and σ′ such that
Σ ` M ′′ = σM = σM ′, Σ ` σx = σ′x for all x ∈ fv(M,M ′), and nfS,Σ({M ′′} ∪
{σ′x | x ∈ fv(M,M ′)}). Since Σ ` σ′M = σ′M ′ = M ′′, by Lemma 12 we
have σ′addeval(M)⇓Σ′ M ′′ and σ′addeval(M ′)⇓Σ′ M ′′. By Lemma 11, there ex-
ist N,N ′, σ1, σ

′
1 such that addeval(M,M ′) ⇓′ ((N,N ′), σ1), M ′′ = σ′

1N , M ′′ =
σ′

1N
′, and σ′ = σ′

1σ1 except on fresh variables introduced in the computation of
addeval(M,M ′) ⇓′ ((N,N ′), σ1).

So N and N ′ unify. Let σu be their most general unifier. Let σ′′
1 such that σ′

1 =
σ′′

1σu. Let x ∈ fv(M,M ′). We have Σ ` σx = σ′x = σ′′
1σuσ1x = σ′′

1σuσ1σuσ1x =
σ′σuσ1x = σσuσ1x. (Indeed, σuσ1 is a most general unifier by Lemma 31 and the
composition of most general unifiers, so it is idempotent.)

Conversely, assume that there exist N,N ′, σ′σu such that addeval(M,M ′) ⇓′

((N,N ′), σ′), σu is the most general unifier of N and N ′ and for all x ∈ fv(M,M ′),
Σ ` σx = σσuσ′x. Then

Σ ` σM = σσuσ′M

= σσuN by Lemma 15

= σσuN ′ since σu is the most general unifier of N and N ′

= σσuσ′M ′ by Lemma 15 again

= σM ′
2

E.2 Soundness of the solving algorithm

The following proofs are partly adaptations of previous proofs [15, 18]. In addition,
they establish the soundness of all simplifications for nounif .

Let R0 = RP0
be the initial set of clauses, R1 = saturate(R0) be the final set of

clauses, and R be the set of clauses during the saturation. At the end of the saturation
algorithm, we have R1 = {R ∈ R | sel(R) = ∅}.

Lemma 33 At the end of the saturation, R satisfies the following properties:

1. For all R ∈ simplify(R0), there exists R′ ∈ R such that R′ w R.

2. Let R ∈ R and R′ ∈ R. Assume that sel(R) = ∅ and there exists F0 ∈ sel(R′)
such that R ◦F0

R′ is defined. In this case, for all R′′ ∈ simplify(R ◦F0
R′),

there exists R′′′ ∈ R such that R′′′ w R′′.

Proof To prove the first property, let R ∈ simplify(R0). We show that during the
whole execution of the saturation, there exists R′ ∈ R such that R′ w R.

The algorithm first builds simplify(R0) (which obviously satisfies the required
property), then removes subsumed clauses by condense . The property is preserved by
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elimination of subsumed clauses. So R = condense(R0) satisfies the property. Fur-
ther additions of clauses and eliminations of subsumed clauses preserve the property,
so we have the result.

The second property states that the fixpoint is reached at the end of saturation. 2

We now give a precise definition of derivations.

Definition 7 (Derivation) Let Tfacts be the set of true nounif facts. Let R be a set of
clauses and F be a closed fact. A derivation of F from R is a finite tree defined as
follows:

1. Nodes (except the root) are labelled by clauses R ∈ R or nounif facts in Tfacts.

2. Edges are labelled by closed facts. (Edges go from a node to each of its sons.)

3. The root has one outgoing edge, labelled by F .

4. If the tree contains a node labelled by R with one incoming edge labelled by F0

and n outgoing edges labelled by F1, . . . , Fn, then R w {F1, . . . , Fn} → F0.
If the tree contains a node labelled by a fact in Tfacts, then this node has one
incoming edge labelled by the same fact and no outgoing edge.

In a derivation, if there is a node labelled by R with one incoming edge labelled
by F0 and n outgoing edges labelled by F1, . . . , Fn, then the clause R can be used to
infer F0 from F1, . . . , Fn. Therefore, there exists a derivation of F from R if and only
if F can be inferred from clauses in R.

The key idea of the proof of the algorithm is the following. Assume that bad is
derivable from R0 and consider a derivation of bad from R0. Assume that the clauses
R and R′ are applied one after the other in the derivation of bad. Also assume that
these clauses have been combined by R ◦F0

R′, yielding clause R′′. In this case, we
replace R′ by R′′ in the derivation of bad. When no more replacement can be made, we
show that all remaining clauses have no selected hypothesis. Then all these clauses are
in R1 = saturate(R0), and we have built a derivation of bad from R1. Moreover, this
replacement process terminates because the number of nodes of the derivation strictly
decreases.

Lemma 34 Consider a derivation that contains a node η′, labelled R′. Let F0 be a
hypothesis of R′. Then there exists a son η of η′, labelled R, such that the edge from η′

to η is labelled by an instance of F0, R ◦F0
R′ is defined, and we still have a derivation

of the same fact if we replace the nodes η and η′ by a node η′′ labelled R′′ = R◦F0
R′.

Proof This proof is already given in [18], with a figure. Let R′ = H ′ → C ′, H ′
1 be the

multiset of the labels of the outgoing edges of η′, and C ′
1 the label of its incoming edge.

We have R′ w (H ′
1 → C ′

1), then there exists σ such that σH ′ ⊆ H ′
1 and σC ′ = C ′

1.
Then there is an outgoing edge of η′ labelled σF0, since σF0 ∈ H ′

1. Let η be the node
at the end of this edge, let R = H → C be the label of η. We rename the variables of
R so that they are distinct from the variables of R′. Let H1 be the multiset of the labels
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of the outgoing edges of η. Then R w (H1 → σF0). By the above choice of distinct
variables, we can then extend σ in such a way that σH ⊆ H1 and σC = σF0.

The edge from η′ to η is labelled σF0, which is an instance of F0. We have σC =
σF0, then C and F0 are unifiable, then R ◦F0

R′ is defined. Let σ′ be the most general
unifier of C and F0, and σ′′ such that σ = σ′′σ′. We have R ◦F0

R′ = σ′(H ∪
(H ′ − F0)) → σ′C ′. Moreover, σ′′σ′(H ∪ (H ′ − F0)) ⊆ H1 ∪ (H ′

1 − σF0) and
σ′′σ′C ′ = σC ′ = C ′

1. Then R′′ = R ◦F0
R′ w (H1 ∪ (H ′

1 − σF0)) → C ′
1. The

multiset of labels of outgoing edges of η′′ is precisely H1 ∪ (H ′
1 − σF0) and the label

of its incoming edge is C ′
1, so we have obtained a correct derivation by replacing η and

η′ with η′′. 2

Lemma 35 If D is a derivation whose node η is labelled R, then we obtain a derivation
D′ of the same fact by relabelling η with a clause R′ such that R′ w R.

Proof Let H be the multiset of labels of outgoing edges of the considered node η,
and C be the label of its incoming edge. We have R w H → C. By transitivity of w,
R′ w H → C. So we can relabel η with R′. 2

We now prove the soundness of each simplification function described in Section 7,
and of their composition simplify .

Lemma 36 Let f range over the simplification functions simpeq , elimvar , elimGVar

◦ swap ◦ unify , elimnouniffalse , elimdup, elimattx , elimtaut , and simplify .
Let Rt = {(1), (2)} when f ∈ {elimvar , simplify} and Rt = ∅ otherwise.
Let D be a derivation of bad such that nf ′S,Σ(D) with a node η labelled R.
We obtain a derivation D′ of bad by relabelling the node η with some clause R′ ∈

f({R}) ∪Rt, deleting nodes, and modifying nodes labelled by a fact in Tfacts.

The set of clauses Rt collects clauses that must be included in the clause set for the
transformation to be correct. The proofs closely follow the intuitions for soundness
given in Section 7.

Proof (for simpeq) Since nf ′S,Σ(D), the facts of σR (except nounif facts) are irre-
ducible by S, so a fortiori the facts of R (except nounif facts) are irreducible by S,
hence simpeq({R}) = {R}, which obviously implies the desired result. 2

Proof (for elimvar ) Let R = H → C, where H = att′(x, y) ∧ att′(x, y′) ∧ . . . and
R′ = R{y/y′}. (The case H = att′(y, x) ∧ att′(y′, x) ∧ . . . is symmetric.) Let H ′

be the multiset of labels of outgoing edges of η and C ′ the label of its incoming edge.
Since D is a derivation, there exists σ such that σH ⊆ H ′, and σC = C ′.

• Assume Σ ` σy = σy′. Since we have nf ′S,Σ(D), σy = σy′. Then σR′ = σR,
so D′ obtained from D by relabelling η with R′ is a derivation.

• Otherwise, Σ ` σy 6= σy′ and thus σnounif(y, y′) ∈ Tfacts. Let D′ be obtained
by relabelling the node η with the clause att′(x, y)∧att′(x, y′)∧nounif(y, y′) →
bad (1), adding the son σnounif(y, y′), and returning the subtree with root η.
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Since att′(x, y) ∈ H , we have σatt′(x, y) ∈ σH ⊆ H ′, and similarly for
att′(x, y′). Thus, D′ is a derivation of bad. 2

Proof (for elimGVar ◦ swap ◦ unify) Let R = H ∧ F → C be the clause modified
by elimGVar ◦ swap ◦ unify . We show that if σF ∈ Tfacts, then elimGVar ◦ swap ◦
unify replaces R with R′ = H ∧ F ′

1 ∧ . . . ∧ F ′
n → C, and σF ′

1, . . . , σF ′
n ∈ Tfacts.

It is easy to infer the lemma from this property. Indeed, let H ′ be the multiset
of labels of outgoing edges of η and C ′ the label of its incoming edge. Since D is a
derivation, there exists σ such that σH ∧σF ⊆ H ′, and σC = C ′. Then σF is derived
by a son of η, so σF ∈ Tfacts. Then by the above property σF ′

1, . . . , σF ′
n ∈ Tfacts, and

D′ obtained from D by relabelling η with R′ = H ∧F ′
1 ∧ . . .∧F ′

n → C and replacing
σF with σF ′

1, . . . , σF ′
n as sons of η is also a derivation.

• We now prove that unify replaces F = nounif(p, p′) with F ′
1 ∧ . . . ∧ F ′

n such
that, if σF ∈ Tfacts, then σF ′

1, . . . , σF ′
n ∈ Tfacts.

By definition of nounif , σF ∈ Tfacts if and only if there exists no closed substi-
tution σ′ with domain GVar such that Σ ` σ′σp = σ′σp′. By Lemma 32, Σ `
σ′σp = σ′σp′ if and only if there exist N,N ′, σ′′, σu such that addeval(p, p′) ⇓′

((N,N ′), σ′′), σu is the most general unifier of N and N ′, and for all x ∈
fv(M,M ′), Σ ` σσ′x = σσ′σuσ′′x. The fact F is replaced with F ′

1, . . . , F
′
n,

where F ′
j = nounif(pj , p

′
j) = nounif((xj

1, . . . , x
j
kj

), σuσ′′(xj
1, . . . , x

j
kj

)) for
each σuσ′′ obtained as above. So Σ ` σ′σp = σ′σp′ if and only if there exists
j ∈ {1, . . . , n} such that Σ ` σ′σpj = σ′σp′j . So σF ∈ Tfacts if and only if
σF ′

1, . . . , σF ′
n ∈ Tfacts. This equivalence implies the result.

• Next, we show that swap replaces F = nounif(p1, p2) with F ′ = nounif(p′1, p
′
2)

such that, if σF ∈ Tfacts, then σF ′ ∈ Tfacts.

We can easily show that for all σ′ with domain GVar ∪ Var , Σ ` σ′p1 = σ′p2

if and only if Σ ` σ′p′1 = σ′p′2. This equivalence yields the result.

• Finally, we show that elimGVar replaces F = nounif((g, p1, . . . , pn), (p′0, . . . ,
p′n)) (where g ∈ GVar ) with F ′ = nounif((p1, . . . , pn), (p′1, . . . , p

′
n)) such

that, if σF ∈ Tfacts, then σF ′ ∈ Tfacts.

Assume σF ∈ Tfacts. Then there exists no σ′ with domain GVar such that
Σ ` σ′σ(g, p1, . . . , pn) = σ′σ(p′0, . . . , p

′
n). So there exists no σ′

1 such that Σ `
σ′

1σ(p1, . . . , pn) = σ′
1σ(p′1, . . . , p

′
n). Indeed, if σ′

1 existed, σ′ = σ′
1{σp′0/g}

would contradict the non-existence of σ′. (Note that g does not occur elsewhere
in F , because F is obtained after applying unify and swap.) Then σF ′ ∈ Tfacts.

2

Proof (for elimnouniffalse) Let F = nounif((), ()). For all σ, σF /∈ Tfacts. So R =
H ∧ F → C cannot be the label of a node in a derivation D. (Hence elimnouniffalse

may harmlessly remove R.) 2

Proof (for elimdup) The result is obvious: the hypotheses of R′ are included in the
hypotheses of R, so R′ w R. 2
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Proof (for elimattx ) The result is obvious: the hypotheses of R′ are included in the
hypotheses of R, so R′ w R. 2

Proof (for elimtaut) The result is obvious: we remove η and replace it with one of
its subtrees. 2

Proof (for simplify) We apply Lemma 36 for every simplification function that de-
fines simplify . 2

Theorem 5 If saturate(R0) terminates and there is a derivation D of bad from R0

with nf ′S,Σ(D), then there is a derivation D′ of bad from saturate(R0) with nf ′S,Σ(D′).

The key idea of the proof is to replace clauses as allowed by the previous lemmas.
When the replacement terminates, we can show that all clauses are in saturate(R0).
We show the termination using the decrease of the number of nodes of the derivation
not in Tfacts.

Proof Let us consider a derivation D of bad from R0 such that nf ′S,Σ(D). (The prop-
erty nf ′S,Σ(D) is preserved by the transformations of the derivation described below:
these transformations do not introduce new non-nounif intermediately derived facts.)

For each clause R in R0, for each R′′ ∈ simplify(R), there exists a clause R′ in R
such that R′ w R′′ (Lemma 33, Property 1). Assume that there exists a node labelled
R in this derivation. By Lemma 36, we can replace R with some R′′ ∈ simplify(R) ∪
{(1), (2)}. Clauses (1) and (2) are subsumed by some clause in R, since they are
obtained by simplification from (Rt), resp. (Rt′) for g = equals. So, in all cases,
there exists R′ ∈ R such that R′ w R′′. By Lemma 35, we can replace R′′ with R′.
Therefore, we can replace nodes labelled by R with nodes labelled by R′. This way,
we obtain a derivation of bad from R.

Next, we build a derivation of bad from R1, where R1 = saturate(R0).
Consider a derivation D of bad from R such that nf ′S,Σ(D). If D contains a node

labelled by a clause not in R1∪Tfacts, we can transform D as follows. Let η′ be a lowest
node of D labelled by a clause not in R1 ∪ Tfacts. Then all sons of η′ are labelled by
clauses in R1 ∪ Tfacts. Let R′ be the clause labelling η′. Since R′ /∈ R1 ∪ Tfacts,
sel(R′) 6= ∅. Take F0 ∈ sel(R′). By Lemma 34, there exists a son η of η′ labelled R,
such that R◦F0

R′ is defined. Since all sons of η′ are labelled by clauses in R1∪Tfacts,
R ∈ R1 ∪ Tfacts. Moreover, by definition of the selection function, F0 is not a nounif
fact, so R /∈ Tfacts, so R ∈ R1, hence sel(R) = ∅ and R ∈ R. By Lemma 34, we can
replace η and η′ with η′′ labelled by R ◦F0

R′. By Lemma 36, we can replace R ◦F0
R′

with some R′′′ ∈ simplify(R ◦F0
R′)∪ {(1), (2)}. By Lemma 33, Property 2, for each

R′′′ ∈ simplify(R ◦F0
R′), there exists R′′ ∈ R such that R′′ w R′′′; as noted above,

this is also true for (1) and (2) so for all R′′′ ∈ simplify(R ◦F0
R′) ∪ {(1), (2)}, there

exists R′′ ∈ R such that R′′ w R′′′. By Lemma 35, we can replace R′′′ with R′′, and
we obtain a derivation D′ of bad from R, such that nf ′S,Σ(D′) and D′ contains fewer
nodes not in Tfacts as D (since the resolution of two clauses removes one node, and
simplifications do not add nodes not in Tfacts).
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Since the number of nodes not in Tfacts strictly decreases, this transformation pro-
cess terminates.

When we cannot perform this transformation any more, all nodes of the derivation
are labelled by clauses in R1 ∪ Tfacts, hence we have obtained a derivation D′ of bad
from R1 such that nf ′S,Σ(D′). 2

Proof (of Theorem 4) If bad is derivable from RP0
then it is derivable from RP0

by
a derivation that satisfies nf ′S,Σ (by Lemma 3), then it is derivable from saturate(RP0

)

by a derivation that satisfies nf ′S,Σ (by Theorem 5), then saturate(RP0
) contains a

clause of the form H → bad. 2
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